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Figure 1. Image inversion and editing with latent diffusion: Our method, termed STSL, provides efficient inversion while enhancing
the quality of reconstructed images, especially when addressing corruptions (e.g., blurriness, low resolution, noise). We show its versatility
in various inversion tasks (left figure): motion deblurring, super-resolution, gaussian deblurring, and inpainting. In addition, STSL extends
to text-guided image editing with corrupted images (right), surpassing the performance of NTI [35], a prominent method in this domain.

Abstract
Sampling from the posterior distribution in latent dif-

fusion models for inverse problems is computationally
challenging. Existing methods often rely on Tweedie’s
first-order moments that tend to induce biased results
[32]. Second-order approximations are computationally
prohibitive, making standard reverse diffusion processes in-
tractable for posterior sampling. We present Second-order
Tweedie sampler from Surrogate Loss (STSL), a novel sam-
pler offering efficiency comparable to first-order Tweedie
while enabling tractable reverse processes using second-
order approximation. Theoretical results reveal that our ap-
proach establishes a lower bound through a surrogate loss
and enables a tractable reverse process using the trace of
the Hessian with only O(1) compute. We show STSL out-
performs SoTA solvers PSLD [43] and P2L [10] by reduc-
ing neural function evaluations by 4X and 8X, respectively,
while enhancing sampling quality on FFHQ, ImageNet, and
COCO benchmarks. Moreover, STSL extends to text-guided
image editing, effectively mitigating residual distortions in
corrupted images. To our best knowledge, this is the first
work to offer an efficient second-order approximation for
solving inverse problems using latent diffusion, which fur-
ther enables editing real-world images with corruptions.

1. Introduction
This paper focuses on solving inverse problems using pre-
trained latent diffusion models. The goal of linear inverse
problem solvers is to find an image x ∈ Rd that satis-
fies y = Ax + n, n ∼ N

(
0, σ2

yId
)

1 , where A ∈
Rk×d is a known measurement operator and y ∈ Rk is
a noisy observation with unknown σ2

y . This gives rise
to a sampling challenge, where the objective is to sample
the posterior p(X|Y = y). Diffusion models are gain-
ing popularity as priors (pt(Xt)) for solving inverse prob-
lems [7, 8, 10, 43, 49]. However, the likelihood term
(pt(y|Xt)) is only available for time t = 0, but not for
t > 0, making posterior sampling inconsistent with the
Bayesian posterior. One way to address this issue is train-
ing a noise conditional likelihood model, yet this is lim-
ited by training costs and the need for re-training when
the measurement operator A changes [13]. State-of-the-
art methods, such as PSLD [43] and P2L [10], resort to al-
ternatives for computing pt(y|Xt). Among these methods,

1Notations. Bold capital letter X, bold small letter x, normal capital
letter X , and normal small letter x denote a matrix, a vector, a vector-
valued random variable, and a scalar respectively. The dimension of the
identity matrix I should be apparent from the context.
∗ This work was done during an internship at Google.



Tweedie’s formula with first-order moments is commonly
used to obtain a conditional expectation of the clean image
(X0) given the noisy image (Xt), i.e., EX0∼pt(X0|Xt) [X0].
The expected clean image is then used to approximate
the likelihood as pt(y|Xt) = EX0∼pt(X0|Xt)pt(y|X0) ≈
pt(y|EX0∼pt(X0|Xt) [X0]). This step reduces inconsistency
in posterior sampling using Bayesian posterior [8, 10, 43].

Samplers relying on Tweedie’s first-order moments are
prone to sub-optimal performance due to biases in recon-
struction [22, 24, 32, 34]. Recent efforts have aimed
to address this bias and improve the results by introduc-
ing second-order approximation using Tweedie’s formula
[5, 32]. Despite these attempts, the first-order approxima-
tion is still widely used in SoTA solvers [10, 43], as existing
second-order alternatives [5, 32] are hindered by significant
time or memory complexity and make conventional reverse
diffusion processes intractable for posterior sampling. As
a result, it remains relatively unexplored to solve inverse
problems with Tweedie’s second-order approximation.

In this paper, we present Second-order Tweedie sam-
pler from Surrogate Loss (STSL), introducing a new sur-
rogate loss function to enable a tractable reverse diffu-
sion process via efficient second-order approximation. Our
key finding lies in updating the drift of the reverse pro-
cess, requiring only estimates of Trace

(
∇2 log pt (xt)

)
and can be efficiently computed through random projec-
tions of the score ∇ log pt(xt) readily available in gener-
ative models via the denoising score matching objective
[21, 53]. Using Tweedie’s first- and second-order mo-
ments, we estimate the mean and covariance of the Gaussian
used to approximate pt(X0|Xt). Unlike first-order methods
[8, 10, 43] that approximate pt(X0|Xt) ≈ δ

(
X0 − X̄0

)
,

where X̄0 = EX0∼pt(X0|Xt) [X0], our STSL sampler serves
as a more effective alternative because it better approxi-
mates pt(X0|Xt). Empirical results demonstrate that STSL
solves linear inverse problems in∼50 diffusion steps, a sub-
stantial improvement over SoTA solvers [10, 43] requiring
1000 steps. This translates into 4X and 8X improvement
in terms of neural function evaluations over PSLD [43]
and P2L [10], respectively. We show superior performance
in denosing, inpainting, super-resolution, Gaussian deblur-
ring, and motion deblurring tasks on standard benchmarks:
FFHQ [25], ImageNet [12], and COCO [30].

Using our STSL sampler, we consider image edit-
ing as another application—sampling from the posterior
p0(X0|y), where y is an input image, to obtain an edited
image X0 ∼ p0(X0|y). Current methods either fine-tune
generative models for specific tasks [27, 44] or use a uni-
versal foundation model for all tasks [17, 35, 37]. SoTA
methods, such as NTI [35], struggle with real-world cor-
ruptions [10, 43] despite excelling with clean source im-
ages, as seen in Fig. 1. Existing solvers like PSLD [43] and
P2L [10] can remove corruption, but require ∼1000 diffu-

sion steps for sampling p0(X0|y), making them less prac-
tical for editing tasks. To address this, we repurpose STSL
in a two-stage design: first restore the image using our in-
verse problem solver in just ∼50 diffusion steps, and then
guide the reverse process in text-based editing using Cross-
Attention-Tuning (CAT). Our results (§5) demonstrate that
our approach surpasses the SoTA NTI [35] in text-guided
image editing from corrupted images.
Our contributions are summarized in three-fold:
• We present an efficient second-order approximation us-

ing Tweedie’s formula to mitigate the bias incurred in the
widely used first-order samplers. With this method, we
devise a surrogate loss function to refine the reverse pro-
cess at every diffusion step to address inverse problems.

• We introduce a new framework for high-fidelity image
editing in real-world environments with corruptions. To
the best of our knowledge, this is the first framework that
can handle corruptions in image editing pipelines.

• We conduct extensive experiments to demonstrate supe-
rior performance in tackling inverse problems (such as
denoising, inpainting, super-resolution, and deblurring)
and achieving high-fidelity text-guided image editing.

2. Related Work
Inverse Problems: Diffusion-based generative models are
increasingly favored as effective priors for solving inverse
problems, falling into two main categories: Pixel-space Dif-
fusion Models (PDMs) [19, 47, 51] and Latent-space Diffu-
sion Models (LDMs) [41]. While PDM-based solvers have
demonstrated impressive quality [7–9, 31, 42, 49] and ro-
bustness [2, 11, 22, 23, 54] across multiple studies, they
often struggle to generalize across different domains and re-
quire a specific generative model for each dataset. To over-
come these limitations, recent advances such as PSLD [43]
leverage the generative power of large foundation models
like Stable Diffusion, outperforming PDM-based solvers by
employing a single LDM for all inverse tasks.

The core concept of PSLD [43] uses the first-order
Tweedie in the latent space of Stable Diffusion, i.e.,
log pT−t(y|Zt) ≈ log pT−t(y|D (E [ZT |Zt])). To enhance
results, the latents are refined using additional gradients
from a gluing objective. Building upon this, P2L [10] up-
dates both latents and text embeddings along with a gen-
eralized gluing objective. However, both PSLD [43] and
P2L [10] require a considerable amount of diffusion steps
(∼1000) for satisfactory reconstruction. In contrast, our
method achieves faithful reconstruction with fewer steps
(∼50), offering a more practical and efficient approach.
Image Editing: As large foundation models become in-
creasingly accessible, the realm of high-fidelity image edit-
ing emerges as a captivating domain for research. Similar to
inverse problem solvers, image editing tools can be broadly
classified into either PDM-based [27, 28, 44] or LDM-based



[17, 35, 37]. The former requires additional losses, such
as CLIP direction loss [27], identity loss [27], structural
similarity loss [28], semantic loss [28], regularization loss
[44], and face preservation loss [28] to guide the reverse
process in the pixel space. On the other hand, LDM-based
tools [17, 35, 37] streamline the process by eliminating un-
necessary complexities associated with multiple loss func-
tions. Instead, they leverage cross-attention-control [17]
on top of a text-conditional generative foundation model.
However, as illustrated in Figure 1, these methods fail to
apply faithful edits when confronted with real-world cor-
ruptions. Moreover, the edits are not consistently localized
in the absence of corruptions. We pinpoint the fundamental
cause of this failure and introduce a framework designed to
address such real-world corruptions (§5).
Second-order Correction to the Tweedie Estimator:
The first-order Tweedie estimator is crucial in both in-
verse problem solvers [8, 10, 43] and image editing tools
[27, 28]. However, it tends to bias generation towards
EZT∼P (ZT |Zt) [ZT ] instead of generating samples ZT ∼
pT−t(ZT |Zt), resulting in less detailed reconstruction. This
bias is attributed to the Jensen’s gap [8]. To address this
limitation, we propose an alternative Tweedie estimator
that only requires first-order scores, unlike prior methods
[5, 32] that need second-order scores or the Jacobian of
the first-order score. By focusing on the first-order score
∇ log pT−t(y|Zt) when sampling p0(X0|y), our estimator
serves as a replacement for the Tweedie estimator with min-
imal computational overhead.

3. Method
3.1. Background
Diffusion Probabilistic Models (DPMs): DPMs [19, 47,
50] consist of two stochastic processes, the forward process
and the reverse process. As the forward process evolves,
noise is gradually added to a clean image until it becomes
indistinguishable from pure noise. This progression is char-
acterized by the general Itô Stochastic Differential Equation
(SDE): dXt = b(Xt, t)dt+ σ(Xt, t)dWt, where Xt ∈ Rd,
drift b : Rd × R+ → Rd, volatility σ : Rd × R+ → R, and
{Wt}Tt=0 is an n-dimensional Wiener process (or Brownian
motion) [36]. A simpler form of the forward process is an
Ornstein-Uhlenbeck process:

dXt = −Xtdt+
√

2dWt, (1)

which has a solution of Xt = X0e
−t +

√
2
∫ t

0
e−(t−s)dWs

that induces a Gaussian transition kernel as given by
pt (Xt|X0 = x0) = N

(
Xt;x0e

−t, (1− e−2t)I
)
. In a dis-

crete setting, this can be written as pt (Xt|X0 = x0) =
N (Xt;

√
ᾱtx0, (1− ᾱt)I), where ᾱt =

∏t
s=0 αs for a fi-

nite sequence of αs ∈ [0, 1] ∀s ∈ [0, T ].
On the other hand, the reverse process gradually re-

moves noises to produce a clean sample at the end,

Algorithm 1: STSL for Image Inversion
Input: Diffusion time steps T , observation y, measurement operator A,

encoder E , decoderD, learned score sθ
Tunable parameters: likelihood strength λ, stochastic averaging stepsK,
second-order correction stepsize η
Output: Reconstructed imageD(ZT )

1 Compute {
−→
Z t}Tt=0,

−→
Z 0 ← E(ATy) . DDIM forward proc. [35, 48]

2 Initialize Z0 ←
−→
Z T . proposed reverse process

3 for t = 0 to T − 1 do
4 for k = 0 toK do
5 ε ∼ N (0, I) . stochastic averaging
6 Z̄T ← (Zt + (1− ᾱT−t)sθ(Zt, T − t))/

√
ᾱT−t

7 Zt ← Zt − λ∇L
(
y, Zt(Z̄T )

)
. Eq. (4)

8 end
9 Zt+1 ← DDIM (Zt) . DDIM reverse process [35, 48]

10 end
11 returnD(ZT )

as characterized by the reverse Itô SDE: dZt =
(Zt + 2∇ log pT−t(Zt)) dt+

√
2dW̃t, subject to weak reg-

ularity conditions [1]. To achieve this, a neural network
is trained to approximate the score ∇ log pT−t(Zt) ≈
sθ(Zt, T − t)∀t ∈ [0, T ] [21, 53], and the reverse Itô SDE:
dZt = (Zt + 2sθ(Zt, T − t)) dt +

√
2dW̃t is employed to

sample from the data distribution pdata(X) := p0(X0).
Posterior Sampling: In this regime, the objective

is to sample from p0(X0|y) that leads to a conditional
Itô SDE: dZt = (Zt + 2∇ log pT−t(Zt|y)) dt +

√
2dW̃t.

Using Bayes’ theorem, the drift term breaks down into
(Zt + 2∇ log pT−t(y|Zt) + 2∇ log pT−t(Zt)). Generative
foundation models, such as Stable Diffusion [41], Imagen
[46], and DALL-E [38, 39] offer a reliable approximation of
the true score, i.e., sθ(Zt, T−t) ≈ ∇ log pT−t(Zt) [21, 53].
As a result, recent focus has shifted towards approximating
log pT−t(y|Zt). In the context of solving inverse problems
or editing natural images with specific prompts, an interest-
ing line of research [8, 10, 27, 28, 43] approximates

log pT−t(y|Zt) ≈ log pT−t(y|EpT−t(ZT |Zt) [ZT ]). (2)

We refer to (2) as the first-order Tweedie estimator for
Pixel-space Diffusion Models (PDMs). For Latent-space
Diffusion models (LDMs), PSLD [43] proposes the follow-
ing first-order approximation (labeled as LDPS in §5):

log pT−t(y|Zt) ≈ log pT−t(y|D(EpT−t(ZT |Zt) [ZT ])),

where D(.) denotes a decoder from latent to pixel space.
We denote the pixel-to-latent encoder as E(·). However,
methods using first-order Tweedie [8, 10, 43] introduce a
bias affecting reconstruction quality [32].

3.2. STSL for Image Inversion

To mitigate bias in first-order Tweedie, we present Second-
order Tweedie sampler from Surrogate Loss (STSL) Algo-
rithm 1, which differs from prior methods [10, 17, 35, 43]
in initialization and latent refinement. We discuss each in
turn and defer implementation details to §B.1.



Initialization: Existing solvers [10, 43] initiate the re-
verse process from Z0 ∼ πd, a standard Gaussian N (0, I),
and incur a discretization error of O

(
de−2T

)
that comes

from DKL (pT ||πd) [3, 6]. As we aim to sample p0(X0|y)
with fewer diffusion steps, this error can be substantial
in high-dimensional sampling. To address this, we re-
duce the error by initializing the reverse process at Z0 ∼
pT (Z0|E(ATy)) and running the forward process using
DDIM [35, 48] sampling, starting from

−→
Z0 = E(ATy)

(§3.1)2. The final latent
−→
ZT

πd= Z0 (equal in distribution)
is then employed for initialization.

Refinement: With Z0 ∼ pT (Z0|E(ATy)), we propose
to sample from a new reverse Itô SDE as follows:

dZt = b̃(Zt, t)dt+
√

2dW̃t, (3)

where b̃(Zt, t) := (Zt + G(y, Zt) + 2∇ log pT−t(Zt)) is
the new drift. In prior works [8, 10, 43], G(y, Zt) rep-
resents a single gradient of the log likelihood evaluated
at Z̄T , i.e. G(y, Zt) ≈ ∇ log pT−t(y|Z̄T ) = −λ∇‖y −
AD(Z̄T )‖22, where Z̄T := EZT∼pT−t(ZT |Zt) [ZT ] = Zt√

ᾱt
+

(1−ᾱt)∇ log pT−t(Zt)√
ᾱt

. This correction step, essential for
SoTA solvers [10, 43] after each denoising update, intro-
duces a quality-limiting bias due to the regression to the
mean Z̄T , as illustrated in §5.1.

In contrast, we propose an update rule that considers a
second order correction term using a surrogate loss func-
tion alongside a proximal gradient update. Specifically, we
approximate G(y, Zt) as−∇L(y, Zt), withL(·, ·) denoting
the surrogate loss function:

L(y, Zt) := λ‖y −AD(Z̄T )‖22 (4)

+
η

d
Eε∼πd

[
εT (∇ log pT−t (Zt + ε)−∇ log pT−t (Zt))

]
,

where the former term captures measurement consistency
and the latter efficiently approximates the Hessian to mit-
igate biases in first-order Tweedie. To ensure we recover
X0 at the end of this new reverse process in Eq. (3),
we optimize for Zt within a small neighborhood around
the corresponding forward latent

−→
Z T−t, which was sam-

pled during the Initialization step outlined above. This is
equivalent to an iterative proximal gradient update using
L(y, Zt) + κ‖Zt −

−→
Z T−t‖22 for some κ > 0.

Implementation: Instead of solving a local optimiza-
tion, we opt for a simpler strategy by iterative gradient
updates using L(y, Zt), and replacing the expectation in
Eq. (4) with a single-sample estimate at each step [4, 29],
i.e., draw a random ε∼πd to perform the update. This it-
erative process of local updates accumulates into an esti-

2An alternative could be to initialize
−→
Z0 as argminZ‖y−AD(Z)‖22.

However, this is more expensive. Empirically, we observe good results
using one step projection, which is significantly less expensive.

mate of the expectation due to path-wise stochastic averag-
ing. Further, we add contrastive loss to the surrogate loss as
L(y, Zt) + (ν/d)LV iT

(
y,AD(Z̄T )

)
[28] to improve the

perceptual quality (§5.2). For simplicity, we do not include
this term in Algorithm 1.

Practicality: This new reverse process is now tractable,
and exhibits performance improvements over SoTA solvers.
Ultimately, the solution to inversion materializes asD(ZT ),
obtained at the end of Eq. (3). STSL (Algorithm 1) has
similar complexity to PSLD (Algo. 2 in [42]), with one ex-
tra correction term η, and outperforms P2L [10] by avoid-
ing text-embedding optimization. Despite the improve-
ment from an extra hyper-parameter ν in the contrastive
loss, STSL excels without it (Table 3). In practice, we
use the same configuration across all the experiments on
three datasets and achieve promising results, which proves
robustness of STSL to hyper-parameters.

3.3. STSL for Image Editing
Inverting Corrupted Latents: To edit a real image, NTI
[35] stands out as a leading method that associates the
real image with a sequence of null embeddings. For-
mally, define Φ(·) as an encoder that maps a text prompt
to an embedding in Rh. Given a text-conditional score
network sθ : Rd × R+ × Rh → Rd, NTI [35] tackles
the optimization problem ϕ̂t = arg minϕt‖

−→
Z T−t−1 −

f (Zt, T − t, ϕt)‖22, with {ϕt}Tt=0 initialized by null-text
embeddings and f (Zt, T − t, ϕt) =

√
ᾱT−t−1Z̄T +√

1− ᾱT−t−1
√

1− ᾱT−tsθ(Zt, T − t, ϕT−t). Instead,
we propose to solve: ϕ̂t = arg minϕt‖Zt+1 −
f (Zt, T − t, ϕt)‖22, where {Zt}Tt=0 are obtained from our
novel reverse SDE using the surrogate loss in Eq. (4). NTI
[35] associates {ϕt}Tt=0 with the corrupted image, leaving
corruptions in the edited image (see §5.3). In contrast, our
proposed null-optimization aligns {ϕt}Tt=0 with a clean im-
age because our new SDE in Eq. (3) yields a clean image at
the end. Thereby, it enables text-guided noisy image editing
via Cross-Attention-Control (CAC) [17].

Cross-Attention-Tuning (CAT): Conventional CAC-
based image editing [17] encounters a critical limitation –
it struggles to maintain the original image content while in-
corporating the desired modifications (§5.3). To address this
issue, our method refines the latents after CAC update via
posterior sampling. Let C denote the CAC module that gives
Ẑt+1 = C (Zt,Φ(“prompt”), t, ϕ̂t) . Then, we update Zt+1

using a single step of STSL:

Zt+1 ← Ẑt+1 − λ∇L
(
y, Z̄T

(
Ẑt+1

))
. (5)

Inverse problem solvers and image editing tools differ due
to the absence of ground truth measurements in the lat-
ter. This limits the effectiveness of the measurement up-
date ∇‖y − AD(Z̄T )‖22 during editing. To address this,



we employ contrastive loss [28] between the edited im-
age D(Z̄T ) and the input image’s features extracted via
ViT’s multi-head self-attention layers [52]. To ensure mean-
ingful features, we apply measurement updates in the ini-
tial phase (30 steps) of the reverse process, and then up-
date the latents in Eq. (5) using contrastive loss: Zt+1 ←
Zt+1 − ν

d∇LV iT
(
y,AD(Z̄T )

)
. The cross-attention fea-

tures help preserve the image’s content while incorporating
desired semantics. We term this process Cross-Attention-
Tuning (CAT), which forms the basis of our proposed image
editing method STSL-CAT.

4. Theory
Recall from §3.1 we seek for a good approximation of
log pT−t(y|Zt). Methods based on Tweedie’s first order
moment leverage the posterior mean from Proposition 4.1
to approximate ∇ log pT−t(y|Zt) ≈ ∇ log pT−t(y|Z̄T ),
where Z̄T = EZT∼pT−t(ZT |Zt)[ZT ]. Since sθ(Zt, T − t) ≈
∇ log pT−t(Zt), this enables a practical implementation of
posterior samplers [8, 10, 43, 49].

Proposition 4.1 ([14, 40]). Given xt =
√
ᾱtx0 +√

1− ᾱtε and ε ∼ N (0, I), denote by X̄0 =
EX0∼pt(X0|Xt=xt)[X0] the posterior mean of pt(X0|Xt =
xt). Then, for the variance preserving SDE in (1)
or DDPM sampling [19], pt(X0|Xt = xt) has mean
X̄0 = xt√

ᾱt
+ (1−ᾱt)√

ᾱt
∇xt log pt(Xt = xt) and co-

variance EX0∼pt(X0|Xt=xt)

[(
X0−X̄0

) (
X0−X̄0

)T ]
=

1−ᾱt
ᾱt

(
I + (1− ᾱt)∇2

xt log pt(Xt = xt)
)
.

The error from the first-order approximation is charac-
terized by the Jensen’s gap [8, Theorem 1]. The gap can
be notable in practice due to the local linearity of first-order
approximations [32]. Prior works [5, 32] mitigate this error
by a second-order approximation that introduces curvature
to the estimator. However, these methods [5, 32] require
expensive Hessian computations. In contrast, our sampler
requires only the trace of the Hessian, and hence enable ef-
ficient computation with minimal cost. We present our main
results in Theorem 4.4 under the assumptions stated below.

Assumption 4.2. Define Z̄T := EZT∼pT−t(ZT |Zt)[ZT ] for
t ∈ [0, T ]. Then, pT−t(y|Z̄T ) = N

(
y;AZ̄T , σ

2
yI
)

and
pT−t(y|Z̄T ) > 0.

Assumption 4.3. For all Z̃T ∈ Rd and m > 0,
−mpT−t(y|Z̄T )I � ∇2pT−t(y|Zt)

∣∣
Z̃T

, where Z̄T :=

EZT∼pT−t(ZT |Zt)[ZT ] for t ∈ [0, T ].

Assumption 4.2 is a common condition in prior works
[8, 10, 42, 43], indicating informative measurements from
Z̄T . Assumption 4.3 simplifies mathematical considera-
tions and ensures the smallest eigenvalue of the Hessian is
uniformly lower bounded by a finite quantity. Notably, the

widely used Gaussian measurement model y = AZ̄T +
σ2
yn,n ∼ N (0, I) satisfies both these assumptions.

Theorem 4.4 (Tweedie Sampler from Surrogate
Loss). Suppose Assumption 4.2 and Assump-
tion 4.3 hold. Let L̂(y, Zt) := log

(
pT−t(y|Z̄T )

)
+

log
(
ξt − (1− ᾱt)m Trace

(
∇2 log pT−t(Zt)

))
, where

ξt = 1 − 1−ᾱt
ᾱt

md. For λ = O( 1
σ2
y

) and γ = O(ηd ),

the following holds: L̂(y, Zt) ≤ log pT−t (y|Zt)
and the gradient of L̂(y, Zt) becomes ∇L̂(y, Zt) '
−λ∇‖y −AZ̄T ‖22 − γ∇

(
Trace

(
∇2 log pT−t(Zt)

))
.

Proof. The proof is included in Appendix A.3.

We draw the following insights from Theorem 4.4.
Practically Implementable: Given ε∼N (0, I), we use
Hutchinson’s estimator [20], along with a random projec-
tion based gradient estimator [15] to compute the trace of
the Hessian as given below Trace

(
∇2 log pT−t(Zt)

)
'

E
[
εT (∇ log pT−t (Zt + ε)−∇ log pT−t (Zt))

]
−O(‖ε‖3)

(Appendix A.4 for details).
Substituting this in Theorem 4.4 and extending the re-

sult to LDMs, our algorithm becomes tractable because it
requires ∇ log pT−t(Zt)≈ sθ(Zt, T − t), which is readily
available in LDMs [41]:

∇L̂(y, Zt) ' −λ∇‖y −AD(Z̄T )‖2 (6)

− γ∇Eε∼πd
[
εT (∇ log pT−t (Zt + ε)−∇ log pT−t (Zt))

]
.

Further, ∇L̂(y, Zt) ' −∇L(y, Zt), where L(y, Zt) is the
surrogate loss function in §3.2 (Appendix A.3 for details).
Connection with First-order Tweedie: The update in
Eq. (6) samples from an alternate reverse process dZt =
b̃(Zt, t)dt +

√
2dW̃t. Thus, in Eq. (2), if we modify the

first-order Tweedie’s conditional drift by setting γ = 0 and
applying a one-step gradient of L(y, Zt), it becomes a spe-
cial case of our drift b̃(Zt, t). However, this setup introduces
a bias that could hamper the quality, as we illustrate in §5.
To mitigate this bias, we implement multiple proximal gra-
dient updates and leverage stochastic averaging to estimate
expectations using the surrogate loss L (y, Zt).
Computational Complexities: Using the gradient update
given in Eq. (6), our sampler provides an efficient second-
order approximation. It uses a correction step, denoted
as ∇Eε∼πd

[
εT (∇ log pT−t (Zt + ε)−∇ log pT−t (Zt))

]
,

which we estimate using only O(1) number of steps.
This stands in contrast to prior methods that require
O(d2) compute, such as calculating the Jacobian of the
score ∇ (∇ log pT−t (Zt)) [5], or even more expensive ap-
proaches like re-training of the Hessian ∇2 log pT−t(Zt)
[32]. Further theoretical results are deferred to Appendix A.

5. Experiments
Datasets: We adhere to FFHQ [25] and ImageNet [12]
benchmarks with 512×512 images. For FFHQ, we use the



SR (×8) Motion Deblur Gaussian Deblur

Method LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑
STSL (Ours) 0.335 31.77 91.32 0.321 31.71 90.01 0.308 32.30 94.04

P2L [10] 0.381 31.36 89.14 0.395 31.37 88.81 0.382 31.63 90.89
PSLD [43] 0.402 31.39 88.89 0.408 31.37 87.61 0.371 32.26 92.63
GML-DPS [43] 0.368 32.34 92.69 0.408 31.43 87.99 0.370 32.33 92.65
LDPS [43] 0.354 32.54 93.46 0.433 31.21 86.29 0.385 32.18 92.34
LDIR [16] 0.423 30.98 86.77 0.446 30.33 80.05 0.421 30.78 84.65

DPS [8] 0.538 29.15 72.92 0.556 28.98 71.95 0.694 28.14 56.15
DiffPIR [55] 0.791 28.12 42.62 0.593 28.92 67.09 0.614 29.06 73.51

SR (×8) Motion Deblur Gaussian Deblur

LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑
0.392 30.64 84.86 0.420 30.38 76.45 0.349 31.03 90.21

0.441 30.38 84.27 0.429 30.65 84.53 0.402 30.70 87.92
0.484 30.23 80.72 0.433 30.50 82.17 0.387 31.20 88.65
0.482 30.35 81.01 0.432 30.55 82.65 0.387 31.19 88.60
0.480 30.25 80.87 0.462 30.36 80.03 0.402 31.14 88.19
0.498 30.04 78.22 0.531 29.56 68.32 0.501 29.81 74.56

0.522 29.18 70.72 0.548 28.79 68.86 0.647 28.11 55.40
0.740 28.17 42.80 0.577 28.81 61.20 0.612 28.93 68.67

Table 1. Quantitative results of inversion: On FFHQ-1K (512×512, left) and ImageNet-1K (512×512, right), the results are obtained
with a noise level σy = 0.01. Best methods are emphasized in bold and second best underlined. PDM-based solvers are shaded in gray;
LDM-based solvers are in the middle row block. Notably, our method STSL outperforms leading inverse problem solvers [10, 43].

Figure 2. Qualitative results of inversion on ImageNet (512×512): All the compared methods utilize the same foundation model,
Stable Diffusion. The top, middle, and bottom rows represent the results on Motion Deblur, Super Resolution (8X), and Gaussian Deblur,
respectively. The highlighted segment distinctly reveals the superior performance of our method (STSL).

identical set of 1000 images as prior work [8, 10, 43]. For
ImageNet, we follow P2L [10] by uniformly sampling 1000
images from the ctest10k split [45]. We conduct abla-
tion studies using COCO 2017 validation set [30].
Baselines: For inverse problems, we benchmark against
SoTA solvers PSLD [43] and P2L [10], alongside LDM-
based methods LDPS [43], GML-DPS [43] and LDIR [16].
Note that LDPS and GML-DPS were first introduced in
PSLD [43] and later extended to prompt-tuning in P2L [10].
For completeness, we also extend comparisons to PDM-
based solvers DPS [8] and DiffPIR [55]. For image editing,
we compare with a leading solution NTI [35].
Inverse Tasks: We investigate 5 inverse tasks: motion de-
blurring, super-resolution (SR), Gaussian deblurring, ran-
dom inpainting, and denoising. We follow the setup of
P2L [10] for motion deblurring3, Gaussian deblurring, and
super-resolution (8X). While testing SR at 8X could be am-

3https://github.com/LeviBorodenko/motionblur

bitious, it challenges these algorithms to their limits. We
also test in less demanding inverse problems, i.e., SR at 4X,
random inpainting with 40% dropped pixels, and denoising
for salt-pepper noise with 2% noises.
Metrics: We evaluate using standard metrics: LPIPS,
PSNR and SSIM. For editing, we resort to CLIP accuracy
[37]. All experiments are conducted on a single A100 GPU.
See Appendix B.1 for details.

5.1. Results on Image Inversion
Inversion Quality: We evaluate our method against SoTA
LDM-based solvers [10, 16, 43] and PDM solvers [8, 55]
on FFHQ and ImageNet datasets. Table 1 summarizes the
results, highlighting STSL’s ability in restoring the per-
ceptual similarity of the original image, with improvement
over SoTA P2L [10] and PSLD [43], particularly evident
in LPIPS scores. Table 1 also underscores the prevailing
trend in LDM-based solvers [10, 43] compared to PDM-
based solvers [8, 26, 49]. Notably, STSL surpasses P2L and

https://github.com/LeviBorodenko/motionblur


Input STSL-CAT (ours)CommercialNTI STSL-CAT (ours)CommercialNTI

�a tiger walking in the jungle� �a leopard walking in the jungle� �a tiger walking on a street�

�a car in front of a house� �a bicycle in front of a house� �a car in front of supermarket�

Figure 3. Qualitative results on image editing: We compared our method with NTI [35] and commercial software on images with
corruption (SRx8 top) and without (bottom). The commercial software requires an additional mask to localize the edits (cyan rectangles).

Method Runtime(s) NFEs Steps

STSL (ours) 45 250 50
P2L [10] 500 2000 1000
PSLD [43] 194 1000 1000
LDPS [43] 190 1000 1000

DPS [8] 180 1000 1000
DMPS [33] 67 1000 1000

P2L

STSL (ours)

Table 2. (left) Efficiency of LDM (top 4 rows) and PDM solvers
(bottom 2 rows) on the super-resolution 8X task. (right) Com-
parison of the image quality. The P2L image has LPIPS/SSIM of
0.51/74, and ours are 0.47/71.

PSLD with a 5% absolute improvement in LPIPS on the
demanding 8x super-resolution task. Figure 2 shows that
STSL produces sharper and more detailed images without
introducing artifacts or hallucination.

We adopt hyperparameters following the convention of
inverse problem solvers [8, 10, 43], optimizing for LPIPS
as it aligns with human perception. While maintaining com-
petitive results on PSNR/SSIM, we notice our SSIM score
could be less satisfactory in some cases. Our exploration re-
veals SSIM’s inclination to label high-frequency artifacts as
“sharpness” and its tendency to penalize blurriness more. In
Table 2 (right), the SSIM score of the P2L output is much
better than ours regardless of the artifacts. Consequently,
the following discussion primarily emphasizes LPIPS.

Inversion Efficiency: Table 2 (left) compares solver ef-
ficiency amongst SoTA methods. LDM-based solvers gen-
erate 512×512 images whereas PDMs produce 256×256.
We downscale the LDM runtime by 4X for a fair compar-
ison with PDMs. P2L [10] runtime is estimated based on
its pseudo-code due to the unavailability of source code.
Consequently, STSL achieves desired results in fewer dif-
fusion steps (T =50) compared to PSLD [43] and P2L [10]
(T = 1000). This computational gain allows extra budget

for local iterative gradient updates (K = 5) using our surro-
gate loss. In addition, STSL realizes a notable 4X improve-
ment in the number of NFEs compared to PSLD [43], and
8X over P2L [10]. Since NFE is the most expensive com-
ponent in posterior sampling (§3.1), less NFEs translate to
practical advantages in runtime efficiency.

5.2. Ablation Study
Bias Analysis: STSL mitigates bias in the first-order
Tweedie estimator by employing stochastic averaging steps
with the surrogate lossL(y, Zt) (§3.2) and an alternative re-
verse process (3) initialized at Z0 ∼ pT (Z0|E(ATy)). By
eliminating Hutchinson’s trace estimator (η = 0) and us-
ing a single-step gradient update with L(y, Zt), we derive
the biased estimator STSL-biased. The disparity between
STSL-biased and PSLD [43] lies in their initialization: the
former begins with Z0 drawn from pT (Z0|E(ATy)), while
the latter from πd. Evaluating on 100 random images in
FFHQ, Table 3 shows the advantages of our improved ini-
tialization and stochastic averaging steps over PSLD [43].
Component Analysis: We study the significance of each
component in STSL using 50 random samples from the
COCO [30] dataset. Hyperparameters derived from this
study also generalize to FFHQ-1K [25] and ImageNet-1K
[12] datasets, showing the robustness of our method in han-
dling unseen domains. Throughout this analysis, we use
salt-pepper noise as corruption in all the experiments.

Table 4(a) shows that employing a 2-sample average
yields a more accurate estimate of the expectation in our
surrogate loss L(y, Zt). With 5 stochastic averaging steps,
we have N = 10 Gaussian samples (ε) in total per diffusion
time step. More samples lead to longer running time and
higher memory demand with marginal benefits in LPIPS,
but sharper image quality as evident from PSNR/SSIM.

Table 4(b) shows the Hutchinson’s trace estimator, de-
noted as η, plays a crucial role. Optimal results were



Gaussian Deblur Salt-pepper Denoise SR (×4) Random Inpaint SR(×8)

Method LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑
STSL (Ours) 0.380 30.82 91.55 0.322 30.43 89.95 0.326 30.58 91.67 0.405 30.13 88.24 0.398 30.32 88.12
STSL-biased (Ours) 0.456 30.81 90.70 0.378 30.29 88.12 0.406 30.52 89.91 0.547 29.64 83.43 0.444 30.26 85.18

PSLD [43] 0.569 29.65 75.19 0.530 29.79 78.74 0.531 29.84 80.22 0.693 28.86 67.25 0.538 29.71 77.71

Table 3. Quantitative results for bias analysis: All methods use 50 diffusion steps. STSL uses 5 stochastic averaging steps. STSL-biased
uses a single step gradient update. The results are obtained with noise level σy = 0.05.

(a)

(b)

N LPIPS PSNR SSIM

1 0.408 29.45 80.09
2 0.403 29.46 81.83
3 0.405 29.51 81.89

η LPIPS PSNR SSIM

0 0.404 29.52 81.94
0.02 0.388 29.52 82.70
0.05 0.395 29.54 82.45

(c)

(d)

ν 0 0.5 2 5 10

LPIPS 0.404 0.399 0.392 0.401 0.413
PSNR 29.52 29.44 29.39 29.31 29.19
SSIM 81.94 81.42 82.09 81.07 80.36

(e) K LPIPS PSNR SSIM NFE

2 0.432 29.51 80.13 20
5 0.408 29.45 90.09 50
10 0.424 29.33 77.42 100

Steps 5 10 50

LPIPS 0.564 0.511 0.408
PSNR 28.56 28.87 29.45
SSIM 66.91 73.57 80.09

(f) Method NTI (clean) NTI-CAT NTI STSL-CAT

LPIPS 0.434 0.425 0.638 0.552
PSNR 29.06 29.11 28.74 28.81
CLIP acc. 96.00 96.00 70.00 93.00

Table 4. Ablation studies: (a) the number of samples ε∼ πd used in stochastic averaging (§3.2) at each diffusion step, (b) coefficient of
the second-order approximation term in Eq. (4) with a single ε, (c) coefficient of the contrastive loss, (d) the number of DDIM steps, (e) the
number of the stochastic averaging steps, and (f) image editing results compared with NTI [35], where the first two columns “NTI (clean)”
and “NTI-CAT” are with clean images to show the effectiveness of CAT, while the last two column are on corrupted images with SRx8.

achieved at η = 0.02. A value too small fails to mitigate
the bias discussed in §3.2, while too large values deviate the
forward process, resulting in a different image.

Table 4(c) demonstrates the effectiveness of the con-
trastive loss controlled by ν introduced in §3.2. As dis-
cussed in §3.2 and §3.3, the contrastive loss helps preserve
the content of the source image through cross attention tun-
ing (CAT) for both inverse problems and image editing.

Tables 4(d) and (e) study the impact of the diffusion steps
and stochastic averaging steps. While the diffusion steps
seem to be the larger the better, we observe 50 DDIM steps
suffice for achieving satisfactory results. For the latter, too
many stochastic averaging steps result in deviation from the
small neighborhood around the forward latent. Thus, we
use a modest number of stochastic averaging steps (i.e., 5)
of proximal gradient update, as detailed in §3.2.

5.3. Results on Image Editing
Qualitative Study: STSL seamlessly extends to editing
corrupted image. As shown in Figure 3, both NTI [35] and
commercial software exhibit lower editing quality for real
images with or without corruption. NTI [35] struggles to
generate quality images with corruptions. The commercial
software demands user-selected regions for editing. In con-
trast, STSL-CAT accurately localizes the edits without user
intervention, and preserves the integrity of the entire image.
For example, in NTI [35], replacing the car with a bicycle
affects the surrounding house, and transforming the house
to a supermarket changes the SUV into a sedan.

Quantitative Study: Table 4(f) shows a quantitative
analysis of 100 randomly selected dog images from Ima-

geNet for “a dog” to “a cat” editing. NTI-CAT incorporates
NTI [35] with our Cross-Attention-Tuning (§3.3) in the re-
verse process, and shows consistently improvement over
NTI on the clean image editing (the first two columns). The
CLIP accuracy [18] remains similar, because it doesn’t mea-
sure content preservation but only the matching between the
output and the target prompt. In corrupted image editing
(the last two columns), our end-to-end STSL-CAT pipeline
demonstrates effectiveness by surpassing NTI [35] with a
notable relative improvement of 32% in CLIP accuracy.

6. Conclusion
We introduced STSL, a novel posterior sampler that com-
bines the efficiency of the first-order Tweedie with a
tractable second-order approximation in a new reverse pro-
cess. Our theoretical results show that our surrogate loss,
requiring only an estimate of the trace of the Hessian, es-
tablishes a lower bound for the second-order approxima-
tion. STSL achieves 4X and 8X reduction in neural func-
tion evaluations compared to SoTA solvers PSLD [43] and
P2L [10], respectively, while enhancing sampling quality
across various inversion tasks. STSL extends to text-guided
image editing, surpassing NTI [35] in handling corrupted
images. To our best knowledge, this marks the first efficient
second-order approximation for solving inverse problems
using latent diffusion and image editing with corruption.
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Appendix
This section includes more results and details that did not fit into the main paper due to space limitation. Particularly, we offer
expanded theoretical analysis in §A and implementation details in §B, along with other supportive analysis. These sections
provide a deeper understanding and comprehensive context to the research presented in the main body of the paper.

A. Theoretical Analysis
A.1. Posterior mean and covariance using Tweedie’s formula

Proposition A.1 ([14, 40]). Given xt =
√
ᾱtx0 +

√
1− ᾱtε and ε ∼ N (0, I), denote by X̄0 = EX0∼pt(X0|Xt=xt)[X0] the

posterior mean of pt(X0|Xt = xt). Then, for the variance preserving SDE or DDPM sampling, pt(X0|Xt = xt) has mean

EX0∼pt(X0|Xt=xt) [X0] =
xt√
ᾱt

+
(1− ᾱt)√

ᾱt
∇xt log pt(Xt = xt)

and covariance

EX0∼pt(X0|Xt=xt)

[(
X0 − X̄0

) (
X0 − X̄0

)T ]
=

1− ᾱt
ᾱt

(
I + (1− ᾱt)∇2

xt log pt(Xt = xt)
)
.

Proof. Given xt = µ+ σε, where ε ∼ N (0, I), we know that xt ∼ N
(
µ, σ2I

)
. From [14, Section 2], we have

E [µ|xt] = xt + σ2∇xt log pt(xt),

V [µ|xt] = σ2
(
1 + σ2

)
∇2

xt log pt(xt),

where E [µ|xt] and V [µ|xt] denote the conditional mean and the conditional variance, respectively. Since xt =
√
ᾱtx0 +√

1− ᾱtε in our case, we get

E
[√
ᾱtx0|xt

]
=
√
ᾱtE [x0|xt] = xt + (1− ᾱt)∇xt log pt(xt),

V
[√
ᾱtx0|xt

]
= ᾱtV [x0|xt] = (1− ᾱt) (1 + (1− ᾱt))∇2

xt log pt(xt),

which upon rearrangement yields the following:

EX0∼pt(X0|Xt=xt) [X0] =
xt√
ᾱt

+
(1− ᾱt)√

ᾱt
∇xt log pt(Xt = xt)

EX0∼pt(X0|Xt=xt)

[(
X0 − X̄0

) (
X0 − X̄0

)T ]
=

1− ᾱt
ᾱt

(
I + (1− ᾱt)∇2

xt log pt(Xt = xt)
)
.

This completes the proof of the statement.

A.2. First-order Tweedie sampler

Theorem A.2. (First-order Tweedie Estimator [8]). Given measurements y = A(zT ) + n, n ∼ N
(
0, σ2

yI
)

and the
first-order approximation pT−t(y|Zt) ≈ pT−t(y|Z̄T ), define the Jensen’s gap as:

J :=
∣∣EZT∼pT−t(ZT |Zt)[pT−t(y|Zt)]− pT−t(y|Z̄T )

∣∣ ,
where Z̄T := EZT∼pT−t(ZT |Zt) [ZT ]. Then, the error due to first-order approximation is upper bounded by

J ≤ d√
2πσ2

y

exp

(
− 1

2σ2
y

)
‖∇zA(z)‖m1,

where ‖∇zA(z)‖ := maxz ‖A(z)‖ and m1 :=
∫
‖ZT − Z̄T ‖ pT−t(ZT |Zt)dZT .

Since ‖∇zA(z)‖ and m1 are finite for most inverse problems, the Jensen’s gap goes to zero as σy → ∞, leading to less
approximation error in (2). This setting is of less practical significance because as σy →∞, the measurements y = A(zT )+
σyε, ε ∼ N (0, I) provide no meaningful information about zT . Thus, sampling from the posterior p0(ZT |y) = p0(X0|y) is
as good as sampling from the prior p0(X0). On the other hand, when σy → 0, the problem is reduced to a noiseless setting
which is relatively easier to deal with. In practically relevant settings where σy is non-zero and finite, the Jensen’s gap could
be arbitrarily large. This leads to a bias in reconstruction and sub-optimal performance in various tasks as we show in §5.



A.3. Second-order Tweedie sampler from surrogate loss

Theorem A.3 (Tweedie Sampler from Surrogate Loss). Suppose Assumption 4.2 and Assumption 4.3 hold. Let L̂(y, Zt)
denote the function:

L̂(y, Zt) := log
(
pT−t(y|Z̄T )

)
+ log

(
1− 1− ᾱt

ᾱt
md− (1− ᾱt)m Trace

(
∇2 log pT−t(Zt)

))
.

For λ = O( 1
σ2
y

) and γ = O(ηd ), the following holds: L̂(y, Zt) ≤ log pT−t (y|Zt) . Further, the gradient of L̂(y, Zt) is given
by:

∇L̂(y, Zt) = − 1

2σ2
y

∇‖y−AZ̄T ‖2−
(1− ᾱt)m(

1− 1−ᾱt
ᾱt

md− (1− ᾱt)m Trace (∇2 log pT−t(Zt))
)∇Trace (∇2 log pT−t(Zt)

)
.

Proof. We want to compute the following:

log pT−t(y|Zt) = log

∫
pT−t(y|Zt, ZT )pT−t(ZT |Zt)dZT

(i)
= log

∫
pT−t(y|ZT )pT−t(ZT |Zt)dZT

= logEZT∼pT−t(ZT |Zt) [pT−t(y|ZT )] (7)

where (i) is because y is independent of Zt given ZT . Denote by Z̄T = EZT∼pT−t(ZT |Zt) [ZT ]. Now, using Taylor series
expansion at Z̄T , for some Z̃T ∈ Br

(
Z̄T
)

:= {Z ∈ Rd|‖Z − Z̄T ‖ ≤ r}, r = ‖ZT − Z̄T ‖, we get

logEZT∼pT−t(ZT |Zt) [pT−t(y|ZT )]

= logEZT∼pT−t(ZT |Zt)

[
pT−t(y|Z̄T ) + 〈∇pT−t(y|Zt) |Z̄T , ZT − Z̄T 〉+

1

2
(ZT − Z̄T )T∇2pT−t(y|Z̃T )(ZT − Z̄T )

]
= log

(
pT−t(y|Z̄T ) +

1

2
EZT∼pT−t(ZT |Zt)

[
(ZT − Z̄T )T∇2pT−t(y|Z̃T )(ZT − Z̄T )

])
,

where the last step follows from linearity of expectation and the fact that 〈∇pT−t(y|Zt) |Z̄T ,EZT∼pT−t(ZT |Zt) [ZT ]−Z̄T 〉 =
0. Since log(a+ b) = log(a) + log(1 + b/a) for a > 0 and pT−t(y|Z̄T ) > 0 due to Assumption 4.2, the above expression
simplifies to

logEZT∼pT−t(ZT |Zt) [pT−t(y|ZT )]

= log
(
pT−t(y|Z̄T )

)
+ log

1 +
EZT∼pT−t(ZT |Zt)

[
(ZT − Z̄T )T∇2pT−t(y|Z̃T )(ZT − Z̄T )

]
2pT−t(y|Z̄T )


= log

(
pT−t(y|Z̄T )

)
+ log

(
1 + EZT∼pT−t(ZT |Zt)

[
(ZT − Z̄T )T

(
∇2pT−t(y|Z̃T )

2pT−t(y|Z̄T )

)
(ZT − Z̄T )

])
≥ log

(
pT−t(y|Z̄T )

)
+ log

(
1−m EZT∼pT−t(ZT |Zt)

[
(ZT − Z̄T )T (ZT − Z̄T )

])
= log

(
pT−t(y|Z̄T )

)
+ log

(
1−m Trace

(
EZT∼pT−t(ZT |Zt)

[(
ZT − Z̄T

) (
ZT − Z̄T

)T ]))
= log

(
pT−t(y|Z̄T )

)
+ log

(
1−m Trace

(
1− ᾱT−t
ᾱT−t

(
I + (1− ᾱT−t)∇2 log pT−t(Zt)

)))
= log

(
pT−t(y|Z̄T )

)
+ log

(
1− 1− ᾱT−t

ᾱT−t
md− (1− ᾱT−t)m Trace

(
∇2 log pT−t(Zt)

))
:= L̂(y, Zt)

This completes the proof of the first part, L̂(y, Zt) ≤ log pT−t (y|Zt).



Next, the gradient of the lower bound with respect to Zt becomes:

∇L̂(y, Zt)

= − 1

2σ2
y

∇‖y −AZ̄T ‖2 +∇ log

(
1− 1− ᾱT−t

ᾱT−t
md− (1− ᾱT−t)m Trace

(
∇2 log pT−t(Zt)

))
= − 1

2σ2
y

∇‖y −AZ̄T ‖2 −
(1− ᾱT−t)m(

1− 1−ᾱT−t
ᾱT−t

md− (1− ᾱT−t)m Trace (∇2 log pT−t(Zt))
)∇Trace (∇2 log pT−t(Zt)

)
,

where the last step follows from∇
(

1− 1−ᾱT−t
ᾱT−t

md
)

= 0.

Implication: From the above result, we have

∇L̂(y, Zt) ' −λ∇‖y −AZ̄T ‖2 − γ∇
(
Trace

(
∇2 log pT−t(Zt)

))
,

where λ = O
(

1
σ2
y

)
and γ = O

(
η
d

)
are hyper-parameters to be tuned in practice.

Connection with the surrogate loss: The gradient of the lower bound L̂(y, Zt) is equal to the negative gradient of the
surrogate loss function L(y, Zt) introduced in §3.2 and §4, i.e., ∇L̂(y, Zt) ' −∇L(y, Zt), when the constants λ and γ
are chosen appropriately. More precisely, as given in the statement of the Theorem A.3, these gradients are equal when
λ = −1

2σ2
y

and γ = −(1−ᾱT−t)m(
1−

1−ᾱT−t
ᾱT−t

md−(1−ᾱT−t)m Trace(∇2 log pT−t(Zt))
) . In our implementation, we use ∇L(y, Zt) that results

in proximal gradient descent in Algorithm 1.

Remark A.4 (Second-order Tweedie for Gaussian Prior). Recall from Appendix A.3 that we want to compute

log pT−t(y|Zt) = logEZT∼pT−t(ZT |Zt) [pT−t(y|ZT )] .

Let us suppose that the prior is Gaussian, i.e., pT (ZT ) = N (ZT ;µ, I). Then, the forward and reverse process become
Gaussian processes. Therefore, we can compute the posterior mean and covariance analytically using Proposition A.1 as:

EZT∼pT−t(ZT |Zt=zt) [ZT ] =
zt√
ᾱT−t

+
(1− ᾱT−t)√

ᾱT−t
∇zt log pT−t(Zt = zt)

=
zt√
ᾱT−t

+
(1− ᾱT−t)√

ᾱT−t
(
√
ᾱT−tµ− zt)

=
√
ᾱT−tzt + (1− ᾱT−t)µ, (8)

EZT∼pT−t(ZT |Zt=zt)

[(
ZT − Z̄T

) (
ZT − Z̄T

)T ]
=

1− ᾱT−t
ᾱT−t

(
I + (1− ᾱT−t)∇2

zt log pT−t(Zt = zt)
)

= (1− ᾱT−t) I.

(9)

Thus, we obtain pT−t (ZT |Zt = zt) = N (ZT ;
√
ᾱT−tzt + (1− ᾱT−t)µ, (1− ᾱT−t) I) 4. Following similar arguments

from the proof in Appendix A.3, if we truncate pT−t (y|ZT ) up to second-order terms in Taylor’s expansion, then the lower
bound only has an additive error by appropriately chosen stepsize. Hence, the gradients match up to some scaling factor.

Note that our theoretical analysis is provided for pixel-space diffusion models. However, it easily extends to latent diffusion
models using proof techniques from PSLD [43]. Importantly, the latent space of latent diffusion models, such as Stable
Diffusion [41] is usually Gaussian, which makes STSL a reasonable algorithm in practice.

4Instead of expanding the term inside expectation as in Appendix A.3, we can exactly compute pT−t (y|Zt = zt) by its second-order Taylor’s expansion
around the posterior mean. Therefore, for a Gaussian prior, this second-order approximation is exact. However, a similar treatment requires Hessian for
non-Gaussian prior, which is computationally expensive in practice.



A.4. Computation using Hutchinson’s Trace Estimator

Given ε ∼ N (0, I), the trace of the Hessian can be efficiently computed as:

E
[
εT (∇ log pT−t (Zt + ε)−∇ log pT−t (Zt))

]
−O(‖ε‖3) ' Trace

(
∇2 log pT−t(Zt)

)
.

To see this, for ε ∼ N (0, I), using Taylor series expansion of the score, we get

∇ log pT−t (Zt + ε) ' ∇ log pT−t (Zt) +∇2 log pT−t(Zt)ε+O
(
‖ε‖2

)
.

Subtracting∇ log pT−t (Zt) from both sides, and taking projection onto ε, we have

εT (∇ log pT−t (Zt + ε)−∇ log pT−t (Zt)) ' εT∇2 log pT−t(Zt)ε+O(‖ε‖3).

The claim follows by taking the expectation of both sides and applying Hutchinson’s trace estimator [20] as given below:

E
[
εT (∇ log pT−t (Zt + ε)−∇ log pT−t (Zt))

]
−O(‖ε‖3) ' Eε∼N (0,I)

[(
εT∇2 log pT−t(Zt)ε

)]
= Trace

(
∇2 log pT−t(Zt)

)
The last step above involves an approximation of a higher derivative through an expectation of random projections of

perturbed function evaluations. This approach has been well studied in online learning settings and with formal guarantees
(e.g., Lemma 2.1 in [15]). In our case, the approximation additionally involves a “centering” with εT∇ log pT−t (Zt). While
this terms is zero in expectation, it is useful to keep because as we discuss in Section 3.2, we are evaluating the expectation
through stochastic averaging with finitely many steps. This centering decreases the magnitude of each step, thus resulting in
variance improvement (and thus a less noisy approximation with a fewer number of steps).

B. Additional Experimental Evaluation
B.1. Implementation Details

Image Inversion: We follow the same experimental setup as prior works [8, 43], and use the measurement operators provided
in their original source code: DPS5 and PSLD6. We employ a Gaussian blur kernel (size 61 × 61, σ = 3.0) for Gaussian
deblurring and a motion blur kernel (size 61 × 61, intensity 0.5) for motion deblurring tasks. For super-resolution, we use
4× and 8× downsampling as measurement operator. Additionally, we introduce 2% salt and pepper noise for denoising and
40% drop rate for random inpainting tasks. For free-form inpainting, we adopt the 10%-20% damage range as utilized in
prior works [10, 45].

Our refinement module in Algorithm 1 uses the Adam optimizer, with an initial learning rate of 1e− 2 and decrementing
by a factor of 0.998 per diffusion time step. This process optimizes the latents with stochastic averaging. Notably, STSL
exhibits robustness across various tasks, showing minimal sensitivity to hyper-parameter changes. Therefore, we maintain
consistent configurations for all tasks, where N = 2, η = 0.02, ν = 2 and λ = 1. We use K = 5 and T = 50 as defualt
and conduct extensive ablation studies for free-form image inpainting task in §B.4. Following the experimental setting of
P2L[10], we add independent and identically distributed Gaussian noise N

(
0, 0.012

)
to each pixel.

Image Editing: In image editing, we use a single stochastic averaging step K = 1 since the latents have been refined during
proximal gradient updates. We use ν = 0.02 for the contrastive loss without normalization by the data dimension d, λ = 1
for the measurement loss and the same coefficient for Hutchinson’s trace estimator η = 0.02 as in inversion. More details
are elaborated in Algorithm 2. For the qualitative demonstration, we compare with NTI7 and a commercial platform that is
publicly available. We conduct the experiments using the latest version of the commercial software by November 2023.
Reproducibility: The pseudo-code of STSL for inverse is given in Algorithm 1 and editing in Algorithm 2. All the hyper-
parameter details are provided in §5 and §B.1.

B.2. Computational Complexity

Table 2 provides a comparative analysis of the runtime performance across various state-of-the-art methods. NFEs are com-
puted based on the required reverse and optimization steps. For instance, P2L [10] demands 1000 reverse steps, accompanied

5https://github.com/DPS2022/diffusion-posterior-sampling
6https://github.com/LituRout/PSLD
7https://github.com/google/prompt-to-prompt/

https://github.com/DPS2022/diffusion-posterior-sampling
https://github.com/LituRout/PSLD
https://github.com/google/prompt-to-prompt/


Algorithm 2: Second-order Tweedie sampler from Surrogate Loss (STSL) for image inversion and editing task
Input: Diffusion time steps T , observed y, measurement operator A, encoder E , decoder D, learned score sθ,

target text “prompt”, text encoder Φ
Tunable Parameters: likelihood strength λ, stochastic averaging steps K, second-order correction stepsize η,
Output: Edited Image D(ZT )

1 Initialization:
−→
Z 0 = E(ATy) . DDIM forward process [35, 48]

2 for t = 0 to T − 1 do
3

−→
Z t+1 ←

√
ᾱt+1

ᾱt

−→
Z t −

(√
1

ᾱt+1
− 1−

√
1
ᾱt
− 1
) (√

1− ᾱt
)
sθ(
−→
Z t, t)

4 end
5 Initialization: Z0 =

−→
Z T . proposed reverse process for image inversion

6 for t = 0 to T − 1 do
7 for k = 0 to K do
8 ε ∼ N (0, I) . stochastic averaging
9 Z̄T ← (Zt + (1− ᾱT−t)sθ(Zt, T − t))/

√
ᾱT−t

10 Zt ← Zt − λ∇‖y −AD(Z̄T )‖ − (η/d)∇
(
εTsθ (Zt + ε, T − t)− εTsθ (Zt, T − t)

)
11 end
12 Z̄T ← (Zt + (1− ᾱT−t)sθ(Zt, T − t))/

√
ᾱT−t

13 Zt+1 ←
√
αT−t(1−ᾱT−t−1)

1−ᾱT−t
Zt +

√
ᾱT−t−1(1−αT−t)

1−ᾱT−t
Z̄T

14 end
15 Initialization: Z0 =

−→
Z T . proposed reverse process for image editing

16 for t = 0 to T − 1 do
17 Z̄T ← (Zt + (1− ᾱT−t)sθ(Zt, T − t, ϕt))/

√
ᾱT−t

18 f (Zt, T − t, ϕt)=
√
ᾱT−t−1Z̄T +

√
1− ᾱT−t−1

√
1− ᾱT−tsθ(Zt, T−t, ϕt)

19 ϕ̂t = arg minϕt‖Zt+1 − f (Zt, T − t, ϕt)‖22 . Null-optimization
20 Ẑt+1 ← CAC(Zt, T − t, ϕ̂t,Φ{“prompt”}) . Cross-Attention-Control (CAC) [17]
21 ε ∼ N (0, I)
22 Z̄T ← (Zt + (1− ᾱT−t)sθ(Zt, T − t,Φ{“prompt”}))/

√
ᾱT−t

23 Zt+1 ← Ẑt+1−λ∇‖y−AD(Z̄T )‖− η
d∇ε

T (sθ (Zt + ε, T − t,Φ{“prompt”})− sθ (Zt, T − t,Φ{“prompt”}))
24 end
25 return D(ZT )

by at least one prompt tuning step per iteration, accumulating in a total of 2000 NFEs. The best results of P2L [10] are
obtained with around 5000 NFEs, which amounts to 30 mins of runtime per image. Other baseline methods require 1000
reverse steps. The best results of PSLD/GML-DPS [43] are obtained with 1000 NFEs, which amounts to 12 mins of run-
time per image. Our STSL framework demonstrates efficiency by employing only 50 DDIM steps coupled with 5 stochastic
averaging steps, resulting in a considerably lower count of 250 NFEs. This translates into significantly lower runtime of
under 3 min with a considerable gain in performance. Note that the runtime of PDM-solvers is lower because the underlying
generative model is smaller compared to large-scale foundation models, such as Stable Diffusion. Despite smaller runtime,
PDM-solvers are subpar SoTA solvers [10, 43] leveraging these foundation models.

B.3. More Qualitative Results

We present extended results of the proposed method and compare with SoTA solvers in motion deblurring (Figure 4), SRx8
(Figure 5), and Gaussian deblurring (Figure 6). Notably, STSL demonstrates superior capability in preserving intricate image
details and reducing artifact generation, particularly in text-rich images. This is exemplified in the last images of Figures 4 and
5, where text clarity and legibility are visibly enhanced. Furthermore, unlike other methods that tend to introduce spurious
textures, our approach consistently maintains high image fidelity, reinforcing the effectiveness of STSL in complex scenarios.

Our results also showcase the adaptability of STSL in image editing tasks. In Figures 9 and 10, we illustrate that conven-
tional editing methods struggle with corrupted input images, whereas STSL-CAT achieves high-fidelity editing under these
conditions. Furthermore, STSL-CAT excels in maintaining the integrity of the image even when the input is not corrupted,



GT Input (corrupted) LDIR LDPS PSLD P2L STSL (ours)

Figure 4. Qualitative results on motion deblurring: Odd rows represent the full image, while even rows show a zoomed-in view of the
green box. The red boxes indicate artifacts from various methods. STSL demonstrates superior performance in preserving image details
while simultaneously minimizing artifacts and fake textures. The competitive baselines: PSLD [43] and P2L[10] introduce artifacts and
fake texture that might be mistaken as sharpness of the reconstructed image. Observe the high fidelity text restoration by the proposed
approach STSL in the last row.



Method LPIPS↓ PSNR↑ SSIM↑ K T NFEs Initialization

STSL-I (Ours) 0.279 30.61 81.53 5 50 250 Alg. 1 Line 5
STSL-III (Ours) 0.282 30.79 82.55 5 200 1000 Alg. 1 Line 5

STSL-II (Ours) 0.386 29.65 77.16 5 50 250 Gaussian
STSL-IV (Ours) 0.311 30.29 81.74 5 200 1000 Gaussian
STSL-V (Ours) 0.291 30.65 82.48 2 1000 2000 Gaussian

P2L [10] 0.321 31.29 85.16 2 1000 2000 Gaussian
PSLD [43] 0.344 31.54 84.20 1 1000 1000 Gaussian
GML-DPS [43] 0.364 31.49 84.00 1 1000 1000 Gaussian
LDPS [43] 0.379 31.34 84.45 1 1000 1000 Gaussian
LDIR [16] 0.386 31.24 84.87 1 1000 1000 Gaussian

DPS [8] 0.368 28.96 69.89 1 1000 1000 Gaussian

Table 5. Quantitative results of the free-form inpainting task on ImageNet-1K. STSL-I/III are initialized from the forward latent
Z0 ∼ pT (Z0|E(ATy)) while all the other methods are initialized with Gaussian noise Z0 ∼ πd. As discussed in §B.4, STSL-I/III
sometimes leaves small missing areas as shown in Figure 8 even though it better reconstructs unmasked regions of the image. To make
a fair comparison, we only consider the methods using the same initialization from the Gaussian noise that successfully inpaint all the
missing regions. In this setting, STSL-IV and STSL-V still outperform SoTA solver PSLD [43] and P2L [10] using the same number of
NFEs: 1000 and 2000, respectively.

as demonstrated in Figure 11. These qualitative results, supporting the quantitative data presented in Table 4(f), reveal that
the integration of CAT with NTI preserve image content, such as in areas of the nose and eyes while changing the style. The
refinement of forward latents (§3.2) further contributes to this improvement in rendering details from the corrupt images.

B.4. Free-form Inpainting

The main body of the paper contains quantitative results on standard datasets. In this section, we provide additional quanti-
tative results on free-form inpainting [10], which targets to generate missing pixels in the blank areas as opposed to restore
corrupted pixels. Following prior works [10, 43], we initialize the reverse process at Z0 ∼ πd in STSL-II/IV/V. STSL-I/III
are initialized at the forward latent Z0 ∼ pT (Z0|E(ATy)). Table 6 and Table 5 show the quantitative evaluation on FFHQ
(512× 512) and ImageNet (512× 512), respectively.

We conduct ablation studies to analyze the latency-optimization trade-offs. As shown in Table 5, STSL uses different
combinations of stochastic averaging steps K and DDIM steps T . When compared with methods with the same number of
NFEs, STSL outperforms the SoTA solvers PSLD [43] and P2L [10] in terms of LPIPS and achieves comparable results in
terms of PSNR/SSIM. Figure 7 illustrates the qualitative results on ImageNet.

Method LPIPS PSNR SSIM

STSL (ours) 0.260 31.30 87.56
P2L [10] 0.273 32.44 91.00
PSLD [43] 0.312 32.42 88.58
GML-DPS [43] 0.335 32.45 88.66
LDPS [43] 0.372 32.12 88.15
LDIR [16] 0.338 32.25 90.28

Table 6. Additional quantitative results on FFHQ-1K.

Limitation: Figure 8 shows the failure cases of our proposed inverse problem solver STSL in free-form inpainting. We
observe that the large blocks of missing pixels are embedded into the forward latents in STSL-I/III , which is hard to refine
using proximal gradient updates. Therefore, the masked regions of the final reconstruction sometimes contain incomplete
pixels. This issue arises due to imperfect encoder-decoder of the Stable Diffusion foundation model [43], and could be partly
circumvented by slowing down the diffusion process to T = 1000 steps and initializing the reverse process at Z0 ∼ πd as in
PSLD [43] and P2L [10]. We recommend following this recipe for free-form inpainting.

The proposed inverse problem solver uses AT from DPS [8], which is set to identity for some tasks. It might be better to



use Jax implementation of AT for improved performance as in P2L [10].
Future work: Our approach does not tune the prompt used in the generative foundation model. Integrating prompt-
tuning [10] into our pipeline might prove beneficial.



GT Input (corrupted) LDIR LDPS PSLD P2L STSL (ours)

Figure 5. Qualitative results on SRx8: Odd rows represent the full image, while even rows show a zoomed-in view of the green box.
The red boxes indicate artifacts from various methods. STSL restores image details without introducing artifacts (row 1) and shows its
potentiality in restoring images with complicated patterns (row 2 and row 6). The competitive baselines: PSLD [43] and P2L [10] suffer
from artifacts that are clearly visible in the highlighted regions.
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Figure 6. Qualitative results on Gaussian deblurring: Odd rows represent the full image, while even rows show a zoomed-in view of
the green box. The red boxes indicate artifacts from various methods. Row 4 and row 8 demonstrate the superior performance of STSL in
restoring text and preserving details.



Figure 7. Qualitative results on free-form inpainting: Odd rows represent the full image, while even rows show a zoomed-in view of
the green box. Note that the model is expected to generate new content that harmonizes with the rest of the pixels, but not necessarily
reproduce the same image. This is because the goal is to sample the posterior p (X|y). The outputs from STSL contain more detailed
patterns (row 6) and clear edges (row 2&4).
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Figure 8. Failure cases of free-form inpainting: The restored images appear sharp when initialized with the forward latents Z0 ∼
pT (Z0|E(ATy)) in STSL-I/III, while the images with the reverse process initialized at Z0 ∼ πd yield more complete inpainting results
(STSL-II/IV/V). One may choose the initialization and the corresponding hyper-parameters as per the requirement in practice.
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Figure 9. Qualitative results on image editing on the corrupted images “tiger” to “leopard”. While NTI[35] fails to conduct high-
fidelity image editing when various corruptions are presented, the commercial software synthesizes artistic visual objects without preserving
the content of the source image. Furthermore, the proposed method STSL-CAT localizes the intended edits without manual intervention,
which is necessary for the commercial software.
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Figure 10. Qualitative results on image editing on the corrupted images “cat” to “fox”. The proposed method STSL preserves the
content of the source image while performing text-guided image editing on corrupt images.
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Figure 11. Qualitative results on Image editing on the clean images. Cross attention tuning (CAT) helps preserve image details with
NTI [35] (NTI-CAT), and STSL-CAT further enhances the quality of the image by refining the forward latents.
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