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Abstract

Despite numerous attempts sought to provide empirical
evidence of adversarial regularization outperforming sole
supervision, the theoretical understanding of such a phe-
nomenon remains elusive. In this study, we aim to re-
solve whether adversarial regularization indeed performs
better than sole supervision at a fundamental level. To
bring this insight to fruition, we study vanishing gradient
issue, asymptotic iteration complexity, sub-optimality gap,
and provable convergence in the context of sole supervi-
sion and adversarial regularization. While the main results
revolve around the central theme, the reported derivations
rely on different theoretic tools to maintain consistency with
existing literature. The key ingredient is a theoretical jus-
tification supported by empirical evidence of adversarial
acceleration in gradient descent. Also, motivated by a re-
cently introduced unit-wise capacity-based generalization
bound, we analyze the generalization error in an adversar-
ial framework.

1. Introduction
At a fundamental level, we study the role of adversarial

regularization in supervised learning. We intend to resolve
the mystery of why conditional generative adversarial net-
works accelerate gradient updates when compared with sole
supervision. In light of deeper understanding, we explore
several crucial properties pertaining to adversarial accelera-
tion.

Over the years several variants of gradient descent algo-
rithms have emerged. In various tasks, adaptive methods
including Adagrad [6], RMSProp [38], and ADAM [16]
perform better than classical gradient descent. Of partic-
ular interest, stochastic version of gradient descent, namely
SGD with momentum has enjoyed great success in neu-
ral network optimization. Its simplicity, superior perfor-
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mance [42], and theoretical guarantees [2] often provide an
edge over other algorithms. This motivates us to choose
SGD as our primary learning algorithm [26, 29]. Despite
superior empirical performance by SGD, we observe van-
ishing gradient issue in near optimal region. This is mir-
rored by poor practical performance when compared with
adversarial regularization [4, 40, 21, 41, 44]. We identify
the root cause of this issue to be the primary objective func-
tion. Since these methods rely on some form of gradients
estimated from the supervised objective, the issue of vanish-
ing gradient inherently resides in the near optimal region.

In recent years, the research community has witnessed
pervasive use of Generative Adversarial Networks (GANs)
on a wide variety of complex tasks [13, 49, 30, 15]. Among
many applications, some require generation of a particular
sample subject to a conditional input. For this reason, there
has been a surge in designing conditional adversarial net-
works [25]. In visual object tracking via adversarial learn-
ing, Euclidean norm is used to regulate the generation pro-
cess so that the generated mask falls within a small neigh-
borhood of actual mask [36]. In photo-realistic image super
resolution, Euclidean or supremum norm is used to mini-
mize the distance between reconstructed and original im-
age [21, 41]. In medical image segmentation, multi-scale
L1-loss with adversarial regularization is shown to outper-
form sole supervision [44]. In medical image analysis, a 3d
conditional GAN along with L1-distance is used to super
resolve CT scan imagery [18].

Furthermore, Isola et al. [13] use L1-loss as a super-
vision signal and adversarial regularization as a continu-
ously evolving loss function. Because GANs can learn a
loss that adapts to data, they fairly solve multitude of tasks
that would otherwise require hand-engineered loss. Xian
et al. [43] use adversarial loss on top of pixel, style, and fea-
ture loss to restrict the generated images on a manifold of
real data. Prior works on this fall under the category of con-
ditional GAN where a composition of pixel and adversarial
loss is primarily optimized [25, 4, 40]. Karacan et al. [14]
use this technique to efficiently generate images of outdoor
scenes. Rout et al. [33] combine spatial and Laplacian spec-
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tral channel attention in regularized adversarial learning to
synthesize high resolution images. Emami et al. [7] co-
alesce spatial attention with adversarial regularization and
feature map loss to perform image-to-image translation.

As per these prior works [44, 5, 12, 34, 32], it is un-
derstandable that supervised learning with adversarial regu-
larization boosts empirical performance. More importantly,
this behavior is consistent across a wide variety of tasks.
As much beneficial as this has been so far, to our knowl-
edge, the theoretical understanding still remains relatively
less explored. This paper aims to bridge the gap by provid-
ing theoretical justification and empirical evidence on the
role of adversarial regularization in supervised learning.

2. Preliminaries
2.0.1 Notations

Let X ⊂ Rdx and Y ⊂ Rdy , where dx and dy denote input
and output dimensions, respectively. The empirical distri-
bution of X and Y are denoted by PX and PY . Given an
input x ∈ X , f(θ;x) : Rdx → Rdy is a neural network
with rectified linear unit (ReLU) activation, which is com-
mon for both supervised and adversarial learning. Here, θ
denotes the trainable parameters of the generator, f(θ; .).
On the other hand, the discriminator, g(ψ; .) has trainable
parameters collected by ψ. The optimal values of these pa-
rameters are represented by θ∗ and ψ∗. For g : Rdy → R,
∇g denotes its gradient and∇2g denotes its Hessian. Given
a vector x, ‖x‖ represents its Euclidean norm. Given a ma-
trix M , ‖M‖ and ‖M‖F denote its spectral and Frobenius
norm, respectively.

Definition 1 (L-Lipschitz). A function f is L-Lipschitz if
∀θ, ‖∇f(θ)‖ ≤ L.

Definition 2 (β-Smoothness). A function f is β-smooth if
∀θ,
∥∥∇2f(θ)

∥∥ ≤ β.

2.0.2 Problem Setup

In sole supervision, the goal is to optimize the following:

arg min
θ

E(x,y)∼P [l (f(θ;x); y)] . (1)

In Wasserstein GAN (WGAN) + Gradient Penalty (GP), the
generator cost function is given by

arg min
θ
−Ex∼PX [g (ψ; f (θ;x))] (2)

and the discriminator cost function is given by,

arg min
ψ

Ex∼PX [g (ψ; f (θ;x))]− Ey∼PY [g (ψ; y)]

+ λGP Ez∼PZ
[
(‖∇zg (ψ; z)‖ − 1)

2
]
.

(3)

Here, PZ represents the distribution over samples along
the line joining samples from real and generator distribu-
tion. Unlike sole supervision, the mapping function fθ(.)
in an augmented objective has access to feedback signals
from the discriminator. Thus, the optimization in super-
vised learning with adversarial regularization is given by

arg min
θ

E(x,y)∼P [l (f(θ;x); y)− g (ψ; f (θ;x))] . (4)

Here, P denotes the joint empirical distribution over X and
Y . The discriminator cost function remains identical to the
Wasserstein discriminator as given by equation (3).

3. Theoretical Analysis
This section states the assumptions and their justifica-

tions in the context of adversarial regularization. It is in-
tended to justify a multitude of tasks that owe the bene-
fits to adversarial training. The technical overview begins
with vanishing gradient issue in the near optimal region. It
then presents the main results of this paper. The bounds
may appear weak to some readers, but note that the goal of
this study is not to provide a tighter bound individually for
sole supervision and adversarial regularization. Rather, the
goal is to understand the role of adversarial regularization
in supervised learning — whether adversarial regularization
helps tighten the existing bounds in supervised learning lit-
erature. Thus, the emphasis is on providing a theoretical
justification to the practial success of supervised learning
with adversarial regularization.

3.1. Mitigating Vanishing Gradient

The primary assumptions are stated as following.

Assumption 1. The function f(θ;x) is L-Lipschitz in θ.

Assumption 2. The loss function l(p; y), where p =
f(θ;x), is β-smooth in p.

Assumption 1 is a mild requirement that is easily sat-
isfied in the near optimal region. Different from standard
smoothness in optimization, it is trivial to justify Assump-
tion 2 by relating it to a quadratic loss function1

Lemma 1. Let Assumption 1 and Assumption 2 hold. If
‖θ − θ∗‖ ≤ ε, then

∥∥∇θE(x,y)∼P [l (f(θ;x); y)]
∥∥ ≤ L2βε.

Proof. Refer to Appendix C.1.

Lemma 1 provides an upper bound on the expected gra-
dient over empirical distribution P in the near optimal re-
gion. As the intermediate iterates (θ) move closer to the
optima (θ∗), i.e., ε → 0, the gradient norm vanishes in ex-
pectation. This essentially resonates with the intuitive un-
derstanding of gradient descent. From another perspective,

1Please refer to Appendix D for numberical experiments confirming
these assumptions in practice.
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the issue of gradient descent inherently resides in the near
optimal region2. We therefore ask a fundamental question:
can we attain faster convergence without having to loose
any empirical risk benefits? The following sections are in-
tended to shed light in this direction.

Lemma 2. Suppose Assumption 1 holds. For a dif-
ferentiable discriminator g(ψ; y), if ‖g − g∗‖ ≤ δ,
where g∗ , g(ψ∗) denote optimal discriminator, then
‖−∇θEx∼PX [g (ψ; f (θ;x))]‖ ≤ Lδ.

Proof. Refer to Appendix C.2.

Lemma 2 indicates that the expected gradient of purely
adversarial generator does not produce erroneous gradients
in the near optimal region, suggesting well behaved com-
posite empirical risk [44].

Theorem 1. Let us suppose Assumption 1 and As-
sumption 2 hold. If ‖θ − θ∗‖ ≤ ε and ‖g − g∗‖ ≤
δ, then

∥∥∇θE(x,y)∼P [l (f(θ;x); y)− g (ψ; f (θ;x))]
∥∥ ≤(

L2βε+ Lδ
)
.

Proof. Refer to Appendix C.3.

To focus more on the empirical success of adversarial
regularization, we study a simple convex-concave minimax
optimization problem. It will certainly be interesting to
borrow some ideas from the vast minimax optimization
literature in various other settings [22, 24]. According
to Theorem 1, the expected gradient of augmented ob-
jective does not vanish in the near optimal region, i.e.,
‖∆θ‖ → Lδ as ε→ 0. In the current setting, the estimated
gradients of l(θ) and −g(θ) at any instant during the
optimization process are positively correlated. Thus,
the gradients of augmented objective is lower bounded
by

∥∥∇θE(x,y)∼P [l (f(θ;x); y)− g (ψ; f (θ;x))]
∥∥ ≥∥∥∇θE(x,y)∼P [l (f(θ;x); y)]

∥∥. The upper and lower
bounds of the intermediate iterates justify non-vanishing
gradient in the near optimal region. It is important to heed
the fact that supervised learning with adversarial regu-
larization sets a more stringent criterion, which requires
convergence of both primary and secondary objectives. In
a smooth-convex-concave setting, which is not necessarily
true in the deep learning paradigm, ε → 0 promotes the
reduction of δ that makes the generator close to optimal
generator. Although this results in vanishing gradients,
the stringent convergence criterion would have already
accelerated gradient updates in the augmented objective.
This will be verified in the following sections. Having
mitigated the vanishing gradient issue, it seems natural
to wonder whether adversarial regularization improves
iteration complexity.

2This issue of vanishing gradient is different from the vanishing gradi-
ent pheonomenon in the initial layers of a very deep feedforward network.
It exists even after residual skip connections that solves the latter.

3.2. Asymptotic Iteration Complexity

In this section, we analyze global iteration complexity of
sole supervision and the augmented objective[45, 3]. The
analysis is restricted to a deterministic setting. For a se-
quence of parameters {θk}k∈N, the complexity of a function
l(θ) is defined as

Tε
(
{θk}k∈N , l

)
:= inf {k ∈ N | ‖∇l (θk)‖ ≤ ε} .

For a given initialization θ0, risk function l and algorithm
Aφ, where φ denotes hyperparameters of training algorithm,
such as learning rate and momentum coefficient, Aφ [l, θ0]
denotes the sequence of iterates generated during training.
We compute iteration complexity of an algorithm class pa-
rameterized by p hyperparameters, A = {Aφ}φ∈Rp on a
function class, L as

N (A,L , ε) := inf
Aφ∈A

sup
θ0∈{Rh×dx ,Rdy×h},l∈L

Tε (Aφ [l, θ0] , l) .

We derive asymptotic bounds under a less restrictive set-
ting as introduced by Zhang et al. [45]. The new condi-
tion is weaker than commonly used Lipschitz smoothness
assumption. Under this condition, Zhang et al. [45] aim
to resolve the mystery of why adaptive gradient methods
converge faster. We use this theoretical tool to study the
asymptotic convergence bounds. To circumvent tractability
issues in non-convex optimization, we follow the common
practice of seeking an ε-stationary point, i.e., ‖∇l (θ)‖ < ε.
We start by analyzing the iteration complexity of gradient
descent with fixed step size. In this regard, we build upon
the assumptions made in [45]. To put more succinctly, let
us recall the assumptions.

Assumption 3. The loss l is lower bounded by l∗ > −∞.

Assumption 4. The function is twice differentiable.

Assumption 5 ((L0, L1)-Smoothness). The function is
(L0, L1)-smooth, i.e., there exist positive constants L0 and
L1 such that

∥∥∇2l (θ)
∥∥ ≤ L0 + L1 ‖∇l (θ)‖.

Theorem 2. Suppose the functions in L satisfy As-
sumption 3, 4 and 5. Given ε > 0, the itera-
tion complexity in sole supervision is upper bounded by

O
(

(l(θ0)−l∗)(L0+L1L
2βε)

ε2

)
.

Proof. Refer to Appendix C.4.

Corollary 1. Using first order Taylor series, the upper
bound in Theorem 2 becomes O

(
l(θ0)−l∗
hε2

)
.

Proof. Refer to Appendix C.5.
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Assumption 6 (Existence of useful gradients). For arbi-
trarily small ζ > 0, the norm of the gradients of the discrim-
inator is lower bounded by ζ, i.e., ‖∇g (ψ; f (θ;x))‖ ≥ ζ.

Assumption 6 requires the discriminator to provide use-
ful gradients until convergence. It is a valid assumption in
minimax optimization problems. Also, it is trivial to prove
this in the inner maximization loop under concave setting.
In other words, the stated assumptions are mild and derived
from prior analyses for the purpose of maintaining consis-
tency with existing literature. Next, we analyze the global
iteration complexity in the adversarial setting.

Theorem 3. Suppose the functions in L satisfy Assump-
tion 3, 4 and 5. Given Assumption 6 holds, ε > 0 and
δ ≤

√
2εζ
L , the iteration complexity in adversarial regular-

ization is upper bounded by O
(

(l(θ0)−l∗)(L0+L1L
2βε)

ε2+2εζ−L2δ2

)
.

Proof. Refer to Appendix C.6.

Corollary 2. Using first order Taylor series, the upper
bound in Theorem 3 becomes O

(
l(θ0)−l∗
hε2+hζε

)
.

Proof. Refer to Appendix C.7.

Since 2εζ − L2δ2 ≥ 0, the augmented objective has
a tighter global iteration complexity compared to sole su-
pervision. In a simplified setup, one can easily verify this
hypothesis by using first order Taylor’s approximation as
given by Corollary 1 and 2. In this case, hζε > 0 ensures
tighter iteration complexity bound. This result is significant
because it improves the convergence rates from O

(
1
ε2

)
to

O
(

1
ε2+εζ

)
. Notice that for a too strong discriminator, As-

sumption 6 does not hold. For a too weak discriminator,
‖g − g∗‖ ≤ δ does not hold when δ is arbitrarily small.
In these cases, the generator does not receive useful gra-
dients from the discriminator to undergo accelerated train-
ing. However, for a sufficiently trained discriminator, i.e.,
‖g − g∗‖ ≤ δ ≤

√
2εζ
L , adversarial acceleration is guaran-

teed. Notably, the empirical risk and iteration complexity
benefit from this provided the discriminator and the genera-
tor are trained alternatively as typically followed in practice.

3.3. Sub-Optimality Gap

Here, we analyze continuous time gradient flow. The
sub-optimality gap of the generator and the discriminator
are defined by κ(t) = κ(θ(t)) := l (θ(t)) − l (θ∗) and
π(t) = π(θ(t)) := g (θ∗) − g (θ(t)), respectively. In the
adversarial setting, l(.) is a convex function, and g(.) is a
concave function. For clarity, we first analyze the gradient
flow in sole supervision using common theoretic tools and
then extend this analysis to the augmented objective.

Theorem 4. In purely supervised learning, the sub-
optimality gap at the average over all iterates in a trajectory
of T time steps is upper bounded by O

(
‖θ(0)−θ∗‖2

2T

)
.

Proof. Refer to Appendix C.8.

Theorem 5. In supervised learning with adversarial reg-
ularization, the sub-optimality gap at the average over all
iterates in a trajectory of T time steps is upper bounded by

O

(
‖θ(0)− θ∗‖2

2T
− π

(
1

T

∫ T

0

θ(t)dt

))
.

Proof. Refer to Appendix C.9.

According to Theorem 4 and 5, the distance to op-
timal solution decreases rapidly in the augmented objec-
tive when compared with the supervised objective. Since
the sub-optimality gap is a non-negative quantity and
π
(

1
T

∫ T
0
θ(t)dt

)
≥ 0, the augmented objective has a

tighter sub-optimality gap. The tightness is controlled by
the sub-optimality gap of the adversary, π(.) at the average
over all iterates in the same trajectory. It is worth mention-
ing that the sub-optimality gap in the adversarial setting is
at least as good as sole supervision. Also, these theorems do
not require all the iterates to be within the tiny landscape of
optimal empirical risk. The genericness of these theorems
provides further evidence of empirical risk benefits in the
augmented objective.

4. Concluding Remarks

In this study, we investigated the slow convergence prop-
erty of sole supervision in the near optimal region, and how
adversarial regularization helped circumvent this issue. Fur-
ther, we explored several crucial properties at this juncture
of understanding the role of adversarial regularization in su-
pervised learning. Particularly intriguing was the generic-
ness of these theorems around the central theme. To make
a fair assessment, standard theoretic tools were employed
in all the theorems. From theoretical perspective, the iter-
ation complexity, sub-optimality gap, convergence guaran-
tee, and the analysis of generalization error provided further
insights to the empirical findings. While the sub-optimality
gap proved tighter empirical risk, the iteration complexity
justified adversarial acceleration. Moreover, it was shown
that the learning algorithm would converge even with adver-
sarial regularization. Although we found the improvement
in empirical risk to be marginal on some datasets, the theo-
retical analysis justified accelerated training in conditional
generative modeling, which was one of the primary subjects
of investigation.
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[20] Charis Lanaras, José Bioucas-Dias, Silvano Galliani, Em-
manuel Baltsavias, and Konrad Schindler. Super-resolution
of sentinel-2 images: Learning a globally applicable deep
neural network. ISPRS Journal of Photogrammetry and Re-
mote Sensing, 146:305–319, 2018. 7

[21] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-
realistic single image super-resolution using a generative ad-
versarial network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4681–4690,
2017. 1, 7

[22] Tianyi Lin, Chi Jin, Michael Jordan, et al. Near-optimal
algorithms for minimax optimization. arXiv preprint
arXiv:2002.02417, 2020. 3, 7

[23] Laurens van der Maaten and Geoffrey Hinton. Visualiz-
ing data using t-sne. Journal of machine learning research,
9(Nov):2579–2605, 2008. 22

[24] Panayotis Mertikopoulos, Christos Papadimitriou, and Geor-
gios Piliouras. Cycles in adversarial regularized learning. In
Proceedings of the Twenty-Ninth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 2703–2717. SIAM,
2018. 3, 7

[25] Mehdi Mirza and Simon Osindero. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784, 2014. 1

[26] Vaishnavh Nagarajan and J Zico Kolter. Generalization
in deep networks: The role of distance from initialization.
In Neural Information Processing Systems (NeurIPS) Work-
shop, Deep Learning: Bridging Theory and Practice, 2017.
1, 8

[27] Yu Nesterov. Efficiency of coordinate descent methods on
huge-scale optimization problems. SIAM Journal on Opti-
mization, 22(2):341–362, 2012. 7

[28] J v Neumann. Zur theorie der gesellschaftsspiele. Mathema-
tische annalen, 100(1):295–320, 1928. 7

[29] Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann
LeCun, and Nathan Srebro. The role of over-parametrization
in generalization of neural networks. In Proceedings of In-
tenational Conference on Learning Represenations (ICLR),
2019. 1, 8, 9

5



[30] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive nor-
malization. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2337–2346,
2019. 1

[31] Alec Radford, Luke Metz, and Soumith Chintala. Un-
supervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015. 20

[32] Litu Rout. Alert: Adversarial learning with expert regular-
ization using tikhonov operator for missing band reconstruc-
tion. IEEE Transactions on Geoscience and Remote Sensing,
2020. 2, 7

[33] Litu Rout, Indranil Misra, S Manthira Moorthi, and Debajy-
oti Dhar. S2a: Wasserstein gan with spatio-spectral laplacian
attention for multi-spectral band synthesis. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition workshop, 2020. 1

[34] Muhammad Sarmad, Hyunjoo Jenny Lee, and Young Min
Kim. Rl-gan-net: A reinforcement learning agent controlled
gan network for real-time point cloud shape completion. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5898–5907, 2019. 2, 7, 17

[35] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Min-
imizing finite sums with the stochastic average gradient.
Mathematical Programming, 162(1-2):83–112, 2017. 7

[36] Yibing Song, Chao Ma, Xiaohe Wu, Lijun Gong, Linchao
Bao, Wangmeng Zuo, Chunhua Shen, Rynson WH Lau, and
Ming-Hsuan Yang. Vital: Visual tracking via adversarial
learning. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 8990–8999,
2018. 1

[37] Matthew Staib, Sashank J Reddi, Satyen Kale, Sanjiv Kumar,
and Suvrit Sra. Escaping saddle points with adaptive gradient
methods. arXiv preprint arXiv:1901.09149, 2019. 7

[38] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop:
Divide the gradient by a running average of its recent mag-
nitude. COURSERA: Neural networks for machine learning,
4(2):26–31, 2012. 1

[39] A.M. Turing. The chemical basis of morphogenesis. Philo-
sophical Transactions of the Royal Society of London. Series
B, Biological Sciences, 237(641):37–72, 1952.

[40] Xiaolong Wang and Abhinav Gupta. Generative image mod-
eling using style and structure adversarial networks. In
European Conference on Computer Vision, pages 318–335.
Springer, 2016. 1

[41] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,
Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: En-
hanced super-resolution generative adversarial networks. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 0–0, 2018. 1

[42] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Sre-
bro, and Benjamin Recht. The marginal value of adaptive
gradient methods in machine learning. In Advances in Neural
Information Processing Systems, pages 4148–4158, 2017. 1

[43] Wenqi Xian, Patsorn Sangkloy, Varun Agrawal, Amit Raj,
Jingwan Lu, Chen Fang, Fisher Yu, and James Hays. Tex-
turegan: Controlling deep image synthesis with texture

patches. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 8456–8465,
2018. 1

[44] Yuan Xue, Tao Xu, Han Zhang, L Rodney Long, and Xiaolei
Huang. Segan: Adversarial network with multi-scale l-1 loss
for medical image segmentation. Neuroinformatics, 16(3-
4):383–392, 2018. 1, 2, 3, 7, 17

[45] Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie.
Why gradient clipping accelerates training: A theoretical
justification for adaptivity. In International Conference on
Learning Representations, 2019. 3

[46] Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit,
Seungyeon Kim, Sashank J Reddi, Sanjiv Kumar, and Su-
vrit Sra. Why adam beats sgd for attention models. arXiv
preprint arXiv:1912.03194, 2019. 7, 13

[47] Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and
Quanquan Gu. On the convergence of adaptive gradi-
ent methods for nonconvex optimization. arXiv preprint
arXiv:1808.05671, 2018. 7

[48] Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic
nested variance reduction for nonconvex optimization. In
Proceedings of the 32nd International Conference on Neural
Information Processing Systems, pages 3925–3936. Curran
Associates Inc., 2018. 7

[49] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 2223–
2232, 2017. 1

6



A. More Related Works
A.1. Adversarial Regularization

Although the improvement in empirical risk is minimal, recent studies on conditional generative models have shown
a significant gain in iteration complexity. The spectral and spatial super resolution based on adversarial regularization is
proven to achieve faster convergence and better empirical risk compared to purely supervised learning [20, 32]. Further,
Ledig et al. [21] show improvement in perceptual quality of high resolution images in the adversarial setting. Despite
superior performance, the theoretical understanding of such phenomena remains elusive. To this end, the theoretical analysis
suggests that there is a constant that bounds the total empirical risk above [44]. This inhibits erroneous gradient estimation by
the discriminator that apparently improves perceptual quality. However, these benign properties of loss surface do not fully
explain the practical observations. The present account is intended to provide further insights to this problem.

Apart from supervised learning, the notion of adversarial regularization has also been studied in Reinforcement Learning
(RL). Henaff et al. [12] use adversarial learning with expert regularization to learn a predictive policy that allows to drive in
a simulated dense traffic. Sarmad et al. [34] use RL agent controlled GAN and L2-loss to convert noisy, partial point cloud
into high-fidelity data.

A.2. Accelerated Gradients

The idea of accelerated training has long been an interesting area of research. An elegant line of work focuses on
variance reduction that aims to address stochastic and finite sum problems by averaging the stochastic noise [35, 48].
Among momentum based acceleration, much theoretical progress has been made to accelerate any smooth convex opti-
mization [27, 2]. Further, many efforts have been made towards changing the step size across iterations based on estimated
gradient norm [6, 37, 47]. Adversarial regularization is similar to these methods in a sense that it offers acceleration in the
near optimal region.

A.3. Minimax Optimization

The seminal work of Neumann [28] in solving the problem of minimax optimization has been a central part of game
theory. Recently, a rapid increase in interest is seen to study the intrinsic properties of minimax problems. The increasing
popularity owes in part to the discovery of generative adversarial networks [10]. In this paper, to focus more on the empirical
success of adversarial regularization, we study a simple minimax optimization problem. However, we wish to allude some
interesting line of work [22, 24] that may encourage further investigation from an algorithmic point of view. It will be useful
to borrow some ideas from the vast literature of minimax optimization under less restrictive setting.

B. Omitted Theoretical Analysis
B.1. Provable Convergence

This section covers the convergence guarantee of the minimax adversarial training under strongly-convex-strongly-
concave and smooth nonconvex-nonconcave criteria. In this regard, we assume finite α-moment of estimated stochastic
gradients as the unbounded variance has a profound impact on optimization process [19]. At each iteration k = 1, . . . , T ,
we denote unbiased stochastic gradient by gk = g(θk) := ∇l(θk, ξ)−∇g(θk, ξ), where ξ represents stochasticity. Here, we
analyze the rates for global clipping. One may wish to analyze this for coordinate-wise clipping [46].

Assumption 7 (Existence of α-moment). Suppose we have gradients at each iteration. There exist positive real numbers
α ∈ (1, 2] and G > 0, such that E [‖g(θ)‖α] ≤ Gα, ∀θ.

Theorem 6 (Strongly-convex-strongly-concave convergence). Suppose Assumption 7 holds. Let l (θk) , l (θk)− g (θk) is a
µ-strongly convex function. Let {θk} be the sequence of iterates obtained using global clipping on SGD with zero momentum.

Define the output to be k-weighted combination of iterates: θ̄ =
∑T
k=1 kθk−1∑T
k=1 k

. If adaptive clipping τk = Gk
1
αµ

1
α and step

size ηk = 5
2µ(k+1) , then the output iterate θ̄ satisfies

E
[
l
(
θ̄
)]
− l (θ∗) ≤ O

(
G2 (µ (T + 1))

2−2α
α −

(
g (θ∗)− E

[
g
(
θ̄
)]))

.

Proof. Refer to Appendix C.10.
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Observe that by eliminating the discriminator and setting α = 2, we recover exactly the SGD rate, i.e., O
(
G2

µT

)
[19].

Thus, the augmented objective converges in strongly-convex-strongly-concave setting. It is determined by the convergence
of the inner maximization loop.

Theorem 7 (Nonconvex-nonconcave convergence). Suppose Assumption 7 holds. Let l (θk) , l (θk)− g (θk) is a possible
L-smooth function and {θk} be the sequence of iterates obtained using global clipping on SGD with zero momentum. Given

constant clipping τk = G (ηkL)
−1
α and constant step size ηk =

(
Rα0 L

2−2α

G2Tα

) 1
3α−2

, where R0 = l(θ0) − l(θ∗), the sequence

{θk} satisfies

1

T

T∑
k=1

E
[
‖∇l (θk−1)‖2

]
≤ O

(
G

2α
3α−2

(
R0L

T

) 2α−2
3α−2

− 1

T

T∑
k=1

E
[
‖∇g(θk−1)‖2

])
.

Proof. Refer to Appendix C.11.

By setting α = 2 and discarding adversarial acceleration, we obtain the standard SGD rate, O
(
G√
T

)
. It is important

that adversarial regularization converges even under nonconvex-nonconcave setting. To this end, we have established that
augmented objective is guaranteed to converge under strongly-convex-strongly-concave and nonconvex-noncave criteria
provided the assumptions are satisfied. These guarantees provide more insights to our understanding of adversarial training
in practice.

B.2. Generalization Error

Motivated by the role of over-parametrization in generalization [26, 29], we study generalization error in the augmented
objective. We use Rademacher complexity to get a bound on the generalization error. Since it depends on hypothesis class,
we use a set of restricted parameters of trained networks to get a tighter bound. The restricted set of parameters is defined as

W =
{

(V,U) |V ∈ Rdy×h, U ∈ Rh×dx , ‖vi‖ ≤ αi,
∥∥ui − u0i∥∥ ≤ βi} ,

where i = 1, 2, . . . , h. Here, vi ∈ Rdy and ui ∈ Rdx denote vector representation of each neuron in the top layer and hidden
layer, respectively. The restricted hypothesis class then becomes

FW = {V [Ux]+| (V,U) ∈ W} ,

where [.]+ represents ReLU activation. For any hypothesis class F , let l o F denote the composition of loss function and
hypothesis class. The following bound holds for any f ∈ FW over m training samples with probability 1− δ.

E(x,y)∼D [l o f ] ≤ 1

m

m∑
i=1

l (f(x); y) + 2RS (l o FW) + 3

√
ln(2/δ)

2m
,

whereRS(H) is the Rademacher complexity of a hypothesis classH with respect to training set S.

RS (H) =
1

m
Eξi∈{±1}m

[
sup
f∈H

m∑
i=1

ξif(xi)

]
.

Relative Generalization Error: We define relative generalization error as

egen,r =

(
E(x,y)∼D [l o f ]− 1

m

m∑
i=1

l (f(x); y)

)
×N .
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To be consistent with [29] while studying generalization, we assume l(f(θ;x); y) be a locally K-Lipschitz function, i.e.,
given y ∈ Y , ‖∇l(f(θ;x); y)‖ ≤ K, ∀ θ. Using K-Lipschitz property of loss function l in Lemma 9 of [29], one can easily
prove that the Rademacher complexity of l o FW is bounded by

RS (l o FW) ≤
2K
√
dy

m

h∑
j=1

αj

(
βj ‖X‖F +

∥∥u0jX∥∥2)

≤
2K
√
dy√

m
‖α‖2

‖β‖2
√√√√ 1

m

m∑
i=1

‖xi‖22 +

√√√√ 1

m

m∑
i=1

‖U0xi‖22

 .

Adapted to current setting, the generalization error becomes

O
(∥∥U0

∥∥
2
‖V ‖F +

∥∥U − U0
∥∥
F
‖V ‖F +

√
h
)
. (5)

C. Technical Proofs
C.1. Proof of Lemma 1

This is a crucial result. So we sketch the proof as following. Using Jensen’s inequality,∥∥∇θE(x,y)∼P [l (f(θ;x); y)]
∥∥2 ≤ E(x,y)∼P

[
‖∇θl (f(θ;x); y)‖2

]
≤ E(x,y)∼P

[
‖∇pl (p; y)∇θf(θ;x)‖2

]
,where p = f(θ;x)

≤ E(x,y)∼P

‖∇pl (p; y)‖2 ‖∇θf(θ;x)‖2︸ ︷︷ ︸
Cauchy-Schwarz inequality


≤ L2E(x,y)∼P

[
‖∇pl (p; y)‖2

]
Let p = f(θ;x) and q = f(θ∗; y). Using β-smoothness and L-Lipschitz property, we get

‖∇pl (p; y)‖ − ‖∇ql (q; y)‖ ≤ ‖∇pl (p; y)−∇ql (q; y)‖
≤ β ‖p− q‖
≤ βL ‖θ − θ∗‖ .

Since ‖θ − θ∗‖ ≤ ε, ∥∥∇θE(x,y)∼P [l (f(θ;x); y)]
∥∥2 ≤ L2E(x,y)∼P

[
(‖∇ql (q; y)‖+ Lβε)

2
]
.

Upon substituting optimality condition, i.e., ‖∇ql (q; y)‖ = 0, the above expression simplifies to∥∥∇θE(x,y)∼P [l (f(θ;x); y)]
∥∥ ≤ L2βε.

This completes the proof of the theorem. �

C.2. Proof of Lemma 2

Using similar arguments from Lemma 1,

‖−∇θEx∼PX [g (ψ; f (θ;x))]‖2 ≤ Ex∼PX
[
‖∇θg (ψ; f (θ;x))‖2

]
≤ Ex∼PX

[
‖∇pg (ψ; p)‖2 ‖∇θf (θ;x)‖2

]
, where p = f (θ;x)

≤ L2Ex∼PX
[
‖∇pg (ψ; p)‖2

]
≤ L2Ex∼PX

[
(‖∇pg (ψ∗; p)‖+ δ)

2
]
≤ L2δ2

Taking square root, ‖−∇θEx∼PX [g (ψ; f (θ;x))]‖ ≤ Lδ, which finishes the proof. �
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C.3. Proof of Theorem 1

By applying triangle inequality after simplification,∥∥∇θE(x,y)∼P [l (f(θ;x); y)− g (ψ; f (θ;x))]
∥∥ ≤ ∥∥∇θE(x,y)∼P [l (f(θ;x); y)]

∥∥+
∥∥−∇θE(x,y)∼P [g (ψ; f (θ;x))]

∥∥
≤ L2βε+ Lδ (Lemma 1 and Lemma 2),

which completes the statement of the theorem. �

C.4. Proof of Theorem 2

We parameterize the path between θk and θk+1 as following:

γ(t) = tθk+1 + (1− t)θk∀t ∈ [0, 1]. (6)

By fixed step gradient descent, the iterate θk+1 = θk − hk∇l(θk). Using Taylor’s expansion,

l (θk+1) = l (θk) +∇l (θk) (θk+1 − θk) +
1

2
(θk+1 − θk)

T ∇2l (θk) (θk+1 − θk)

= l (θk)− hk ‖∇l (θk)‖2 +
1

2
(θk+1 − θk)

T ∇2l (θk) (θk+1 − θk) .

(7)

Using Cauchy-Schwarz inequality and integrating over parameterized curve γ(t),

l (θk+1) ≤ l (θk)− hk ‖∇l (θk)‖2 +
1

2
‖(θk+1 − θk)‖

∥∥∇2l (θk) (θk+1 − θk)
∥∥

≤ l (θk)− hk ‖∇l (θk)‖2 +
1

2
‖(θk+1 − θk)‖2

∫ 1

0

∥∥∇2l (γ(t))
∥∥ dt. (8)

We know by Assumption 5 ∥∥∇2l (θ)
∥∥ ≤ L0 + L1 ‖∇l (θ)‖ . (9)

Then using the descent rule and arguments of Theorem 1, we obtain the following inequality:

l (θk+1) ≤ l (θk)− hk ‖∇l (θk)‖2

+
h2k ‖∇l (θk)‖2

2

∫ 1

0

(L0 + L1 ‖∇l (γ(t))‖) dt

≤ l (θk)− hk ‖∇l (θk)‖2

+
h2k ‖∇l (θk)‖2

2

∫ 1

0

(
L0 + L1L

2βε
)
dt

≤ l (θk)− hk ‖∇l (θk)‖2 +
h2k ‖∇l (θk)‖2

(
L0 + L1L

2βε
)

2
.

(10)

Let us choose hk = 1
L0+L1L2βε . Now,

l (θk+1) ≤ l (θk)− hk ‖∇l (θk)‖2

2

≤ l (θk)− ‖∇l (θk)‖2

2 (L0 + L1L2βε)
.

(11)

Assume that it takes T iterations to reach ε-stationary point, i.e., ε ≤ ‖∇l (θk)‖ for k ≤ T . By a telescopic sum over k,

T−1∑
k=0

l (θk+1)− l (θk) ≤ −Tε2

2 (L0 + L1L2βε)

=⇒ T ≤
2 (l(θ0)− l∗)

(
L0 + L1L

2βε
)

ε2
.

(12)
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Therefore, we get

sup
θ0∈{Rh×dx ,Rdy×h},l∈L

Tε (Ah [l, θ0] , l) = O

(
(l(θ0)− l∗)

(
L0 + L1L

2βε
)

ε2

)
(13)

which finishes the proof. �

C.5. Proof of Corollary 1

Using the arguments made in the proof of Theorem 2 and first-order Taylor’s expansion, we get

l (θk+1) = l (θk)− hk ‖∇l (θk)‖2 ≤ l (θk)− hkε2. (14)

By telescopic sum,
∑T−1
k=0 l (θk+1)− l (θk) ≤ −Thkε2. So

sup
θ0∈{Rh×dx ,Rdy×h},l∈L

Tε (Ah [l, θ0] , l) = O
(

(l (θ0)− l∗)
hε2

)
(15)

which finishes the proof. �

C.6. Proof of Theorem 3

Recall that the target function l(θ) remains identical in both the settings except for the additional cost of the discriminator
in the augmented objective. In this setting, the parameters are updated as

θk+1 = θk − hk∇ (l (θk)− g (ψ; f (θk;x))) . (16)

Using Taylor’s expansion, triangle inequality, and Cauchy-Schwarz inequality as in Theorem 2, we obtain

l (θk+1) ≤ l (θk)− hk ‖∇l (θk)‖2 − hk ‖∇l (θk)‖ ‖∇g (ψ; f (θk;x))‖

+
h2k ‖∇ (l (θk)− g (ψ; f (θk;x)))‖2

2

∫ 1

0

∥∥∇2l(γ(t))
∥∥ dt. (17)

By Assumption 5 and 6,

l (θk+1) ≤ l (θk)− hk ‖∇l (θk)‖2 − hk ‖∇l (θk)‖ ζ

+
h2k ‖∇l (θk)−∇g (ψ; f (θk;x))‖2

2

∫ 1

0

(L0 + L1 ‖∇l(γ(t))‖) dt.
(18)

Upon simplification using arguments of Theorem 2 and applying Minkowski’s inequality,

l (θk+1) ≤ l (θk)− hk ‖∇l (θk)‖2 − hk ‖∇l (θk)‖ ζ

+
h2k

(
‖∇l (θk)‖2 + ‖∇g (ψ; f (θk;x))‖2

)
2

(
L0 + L1L

2βε
)
.

(19)

Using hk = 1
L0+L1L2βε , we get

l (θk+1) ≤ l (θk)− hk ‖∇l (θk)‖2

2
− hk ‖∇l (θk)‖ ζ +

hk ‖∇g (ψ; f (θk;x))‖2

2

≤ l (θk)− hk ‖∇l (θk)‖2

2
− hk ‖∇l (θk)‖ ζ +

hkL
2δ2

2
, (Lemma 2).

(20)

Assuming T iterations to find an ε-stationary point, i.e., ε ≤ ‖∇l (θk)‖ for k ≤ T . By a telescopic sum over k,

T−1∑
k=0

l (θk+1)− l (θk) ≤
−T

(
ε2 + 2εζ − L2δ2

)
2 (L0 + L1L2βε)

=⇒ T ≤
2 (l(θ0)− l∗)

(
L0 + L1L

2βε
)

ε2 + 2εζ − L2δ2
.

(21)
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Therefore, we obtain

sup
θ0∈{Rh×dx ,Rdy×h},l∈L

Tε (Ah [l, θ0] , l) = O

(
(l(θ0)− l∗)

(
L0 + L1L

2βε
)

ε2 + 2εζ − L2δ2

)
(22)

which finishes the proof. �

C.7. Proof of Corollary 2

Using the arguments made in the proof of Theorem 3 and first-order Taylor’s approximation, we get

l (θk+1) = l (θk)− hk ‖∇l (θk)‖2 − hk ‖∇l (θk)‖ ‖∇g (ψ; f (θk;x))‖
≤ l (θk)− hkε2 − hkεζ.

(23)

By telescopic sum,
∑T−1
k=0 l (θk+1)− l (θk) ≤ −Thkε2 − Thkεζ. Therefore,

sup
θ0∈{Rh×dx ,Rdy×h},l∈L

Tε (Ah [l, θ0] , l) = O
(

(l (θ0)− l∗)
hε2 + hεζ

)
(24)

which finishes the proof. �

C.8. Proof of Theorem 4

In sole supervision, the parameters are updated by dθ(t)
dt = −∇l(θ(t)). We define distance to optimal solution as r2(t) =

1
2 ‖θ(t)− θ

∗‖2. Now differentiating both sides, we get

dr2(t)

dt
=

〈
dθ(t)

dt
, θ(t)− θ∗

〉
= 〈−∇l(θ(t)), θ(t)− θ∗〉 .

(25)

Using convexity and integrating over all iterates in a trajectory of T time steps,

1

T

∫ T

0

dr2(t)

dt
dt ≤ 1

T

∫ T

0

−κ(t)dt

=⇒ 1

T

(
r2(T )− r2(0)

)
≤ − 1

T

∫ T

0

κ(t)dt

=⇒ 1

T

∫ T

0

κ(θ(t))dt ≤ r2(0)

T
.

(26)

By Jensen’s inequality,

κ

(
1

T

∫ T

0

θ(t)dt

)
≤ 1

T

∫ T

0

κ(θ(t))dt. (27)

Therefore, κ
(

1
T

∫ T
0
θ(t)dt

)
= O

(
‖θ(0)−θ∗‖2

2T

)
which finishes the proof. �

C.9. Proof of Theorem 5

In supervised learning with adversarial regularization, the parameters are updated by dθ(t)
dt = −∇l(θ(t)) + ∇g(θ(t)).

Using arguments of Theorem 4, we obtain

dr2(t)

dt
= 〈−∇l(θ(t)), θ(t)− θ∗〉+ 〈∇g(θ(t)), θ(t)− θ∗〉 . (28)
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Since l(.) is convex and g(.) is concave, we get

1

T

∫ T

0

dr2(t)

dt
dt ≤ − 1

T

∫ T

0

κ(t)dt− 1

T

∫ T

0

π(t)dt

=⇒ 1

T

(
r2(T )− r2(0)

)
≤ − 1

T

∫ T

0

κ(t)dt− 1

T

∫ T

0

π(t)dt

=⇒ 1

T

∫ T

0

κ(θ(t))dt ≤ r2(0)

T
− 1

T

∫ T

0

π(θ(t))dt.

(29)

Now, using Jensen’s inequality on both κ(.) and π(.)

κ

(
1

T

∫ T

0

θ(t)dt

)
= O

(
‖θ(0)− θ∗‖2

2T
− π

(
1

T

∫ T

0

θ(t)dt

))
(30)

which finishes the proof. �

C.10. Proof of Theorem 6

For simplicity, let us denote the bias bk = E [ĝk]−∇l(θk).

‖θk − θ∗‖2 = ‖θk−1 − ηkĝk−1 − θ∗‖2

= ‖θk−1 − θ∗‖2 − 2ηk〈θk−1 − θ∗, ĝk−1〉+ η2k ‖ĝk−1‖
2

= ‖θk−1 − θ∗‖2 − 2ηk〈θk−1 − θ∗,∇l(θk−1)〉 − 2ηk〈θk−1 − θ∗, bk−1〉+ η2k ‖ĝk−1‖
2

≤ ‖θk−1 − θ∗‖2 − 2ηk〈θk−1 − θ∗,∇l(θk−1)〉+ 2ηk ‖θk−1 − θ∗‖ ‖bk−1‖︸ ︷︷ ︸
By Cauchy-Schwarz inequality

+ η2k ‖ĝk−1‖
2

≤ ‖θk−1 − θ∗‖2 − 2ηk〈θk−1 − θ∗,∇l(θk−1)〉+ ηk

(
‖θk−1 − θ∗‖2 + ‖bk−1‖2

)
︸ ︷︷ ︸

By AM-GM inequality

+ η2k ‖ĝk−1‖
2

(31)

By µ-strong convexity, it is required that there exist positive constants µ such that for all (x, y), l(y) ≥ l(x)+〈y−x,∇l(x)〉+
µ
2 ‖y − x‖

2. Using strong-convexity at θk−1 and θ∗, we get

‖θk − θ∗‖2 ≤ ‖θk−1 − θ∗‖2 − 2ηk (l(θk−1)− l(θ∗))− ηkµ ‖θk−1 − θ∗‖2 + ηk

(
‖θk−1 − θ∗‖2 + ‖bk−1‖2

)
+ η2k ‖ĝk−1‖

2

≤ ‖θk−1 − θ∗‖2 (1− ηkµ+ ηk)− 2ηk (l(θk−1)− l(θ∗)) + ηk ‖bk−1‖2 + η2k ‖ĝk−1‖
2
.

(32)

Lemma 3. Suppose Assumption 7 holds for any g(θ) and α ∈ (1, 2]. With global clipping parameter τ ≥ 0, the variance
and bias of the estimator ĝ are upper bounded as:

E
[
‖ĝ(θ)‖2

]
≤ Gατ2−αand ‖E [ĝ(θ)]−∇l(θ) +∇g(θ)‖2 ≤ G2ατ2−2α. (33)

One can easily prove this using Lemma 2 of [46]. Upon rearranging, taking expectation of both sides, and using Lemma
3,

E [l(θk−1)]− l(θ∗) ≤ E
[(

η−1k − µ+ 1

2

)
‖θk−1 − θ∗‖2 −

η−1k
2
‖θk − θ∗‖2

]
+

1

2
G2ατ2−2α +

ηk
2
Gατ2−α. (34)

Let us choose η−1
k −µ+1

2 = k − 1 and η−1
k

2 = k + 1. After simplification, ηk = 5
2µ(k+1) . Now, substitute τk = Gk

1
αµ

1
α ,

ηk = 5
2µ(k+1) and multiply k both sides. Thus,

kE [l(θk−1)]− kl(θ∗) ≤ E
[
k(k − 1) ‖θk−1 − θ∗‖2 − k(k + 1) ‖θk − θ∗‖2

]
+
G2k

2−α
α µ

2−2α
α

2

[
5

2

(
k

k + 1

)
+ 1

]
. (35)
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Since k
k+1 < 1 for k = 1, . . . , T , we get

kE [l(θk−1)]− kl(θ∗) ≤ E
[
k(k − 1) ‖θk−1 − θ∗‖2 − k(k + 1) ‖θk − θ∗‖2

]
+

7G2k
2−α
α µ

2−2α
α

4
. (36)

Taking telescopic sum over k = 1, . . . , T , we obtain

T∑
k=1

kE [l(θk−1)]− l(θ∗)

T∑
k=1

k ≤ E
[
−T (T + 1) ‖θT − θ∗‖2

]
+

7G2µ
2−2α
α

4

T∑
k=1

k
2−α
α . (37)

Using
∑T
k=1 k

2−α
α ≤

∫ T+1

0
k

2−α
α dk ≤ (T + 1)

2
α ,

T∑
k=1

kE [l(θk−1)]− l(θ∗)
T (T + 1)

2
≤ 7G2µ

2−2α
α

4
(T + 1)

2
α . (38)

Now, dividing both sides by T (T+1)
2 and using T−1 ≤ 2(T + 1)−1 for T ≥ 1,∑T

k=1 kE [l(θk−1)]∑T
k=1 k

− l(θ∗) ≤ 7G2µ
2−2α
α (T + 1)

2−2α
α . (39)

By Jensen’s inequality,

E

[
l

(∑T
k=1 kθk−1∑T
k=1 k

)]
− l(θ∗) ≤ O

(
G2 (µ(T + 1))

2−2α
α

)
(40)

Substituting l (θ) = l (θ)− g (θ), we get

E
[
l
(
θ̄
)]
− l(θ∗) ≤ O

(
G2 (µ(T + 1))

2−2α
α −

(
g (θ∗)− E

[
g
(
θ̄
)]))

, (41)

which finishes the proof. �

C.11. Proof of Theorem 7

The notations of l and bk follow from Appendix C.10. Using L-smooth property of l, we get

l (θk) ≤ l (θk−1) + 〈∇l (θk−1) , θk − θk−1〉+
L

2
‖θk − θk−1‖2

≤ l (θk−1) + 〈∇l (θk−1) ,−ηkĝk−1〉+
η2kL

2
‖ĝk−1‖2

≤ l (θk−1)− ηk| ‖∇l(θk−1)‖2 − ηk〈∇l(θk−1), bk−1〉+
η2kL

2
‖ĝk−1‖2

≤ l (θk−1)− ηk| ‖∇l(θk−1)‖2 + ηk ‖∇l(θk−1)‖ ‖bk−1‖︸ ︷︷ ︸
By Cauchy-Schwarz inequality

+
η2kL

2
‖ĝk−1‖2

≤ l (θk−1)− ηk| ‖∇l(θk−1)‖2 +
ηk
2

(
‖∇l(θk−1)‖2 + ‖ bk−1‖2

)
︸ ︷︷ ︸

By AM-GM inequality

+
η2kL

2
‖ĝk−1‖2

(42)

Taking expectation of both sides,

E [l(θk)− l(θk−1)] ≤ E
[
−ηk

2
‖∇l(θk−1)‖2

]
+
ηk
2
G2ατ2−2α +

η2kL

2
Gατ2−α. (43)
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Upon rearranging and taking telescopic sum over k = 1, . . . , T , we obtain

1

T

T∑
k=1

E
[
‖∇l(θk−1)‖2

]
≤

2η−1k
2

(l(θ0)− l(θ∗)) +G2ατ2−2α + ηkLG
ατ2−α. (44)

By choosing τ = G (ηkL)
−1
α ,

1

T

T∑
k=1

E
[
‖∇l(θk−1)‖2

]
≤

2η−1k R0

T
+ 2G2 (ηkL)

2α−2
α . (45)

Let us choose ηk =
(
Rα0 L

2−2α

G2Tα

) 1
3α−2

. Thus,

1

T

T∑
k=1

E
[
‖∇l(θk−1)‖2

]
≤ 4G

2α
3α−2

(
R0L

T

) 2α−2
3α−2

(46)

Now, substituting l(θ) = l(θ)− g(θ), we get

1

T

T∑
k=1

E
[
‖∇l(θk−1)‖2 + ‖∇g(θk−1)‖2 − 2〈∇l(θk−1),∇g(θk−1)〉

]
≤ 4G

2α
3α−2

(
R0L

T

) 2α−2
3α−2

. (47)

Since the gradients received from l(θ) and g(θ) are negatively correlated at any instant during the optimization process, the
above expression simplifies to

1

T

T∑
k=1

E
[
‖∇l(θk−1)‖2 + ‖∇g(θk−1)‖2 + 2 ‖∇l(θk−1)‖ ‖∇g(θk−1)‖

]
≤ 4G

2α
3α−2

(
R0L

T

) 2α−2
3α−2

. (48)

Therefore,

1

T

T∑
k=1

E
[
‖∇l(θk−1)‖2

]
+

1

T

T∑
k=1

E
[
‖∇g(θk−1)‖2

]
≤ 4G

2α
3α−2

(
R0L

T

) 2α−2
3α−2

. (49)

Upon simplification,

1

T

T∑
k=1

E
[
‖∇l(θk−1)‖2

]
≤ O

(
G

2α
3α−2

(
R0L

T

) 2α−2
3α−2

− 1

T

T∑
k=1

E
[
‖∇g(θk−1)‖2

])
(50)

which finishes the proof. �

D. Experiments
The experimental section aims to answer the following questions. How does adversarial regularization (a) mitigate van-

ishing gradients in the near optimal region? (b) accelerate training? (c) achieve tighter sub-optimality gap? (d) converge
under practical setting? and (e) cast doubts on the generalization measure?

D.1. Implementation Details

Unless specified otherwise, the experiments are conducted on a two layer neural network with ReLU activation function.
For completeness, we also experiment with practical neural network architectures. We do not use weight decay, dropout, or
normalization. In these settings, 13 architectures are trained with the number of hidden units ranging from 23 to 215. We use
SGD with momentum for training the networks. All parameters are initialized from uniform distribution. The experiments
are conducted on a Linux system with 64GB RAM and 2 x V100 gpus using PyTorch.
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Figure 1. Comparison of gradients between supervised (sup) and augmented (aug) objective in the hidden layer (GradU) on MNIST.
Adversarial regularization mitigates vanishing gradient issue.
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Figure 2. Comparison of gradients between supervised (sup) and augmented (aug) objective in the top layer (GradV) on MNIST. Adver-
sarial regularization mitigates vanishing gradient issue.

D.1.1 MNIST Dataset

We use SGD with momentum 0.9, batch size 64, and a fixed learning rate of 0.01 on MNIST dataset. Here, n = 60000
samples of size [28 × 28] are used in training and 10000 samples are used in testing. The convergence criterion is set to be
the mean square error of 0.001 or a maximum of 1000 epochs.

D.1.2 CIFAR10 Dataset

On CIFAR10 dataset, we use 50000 samples of size [32 × 32 × 3] in training and remaining 10000 samples in testing. All
the hyperparameters are same as on MNIST except for the convergence error of 0.02.

D.1.3 Tiny Imagenet Dataset

Different from MNIST, the learning rate is set to be 0.001 and convergence error is chosen as 0.02. Out of 100000 samples
of size [64× 64× 3], we use n = 90000 in training and 10000 samples in testing.

D.2. Experimental Results

D.2.1 Results on MNIST

Figure 1 and 2 provide empirical evidence of the vanishing gradient issue, and how adversarial regularization helps circum-
vent this. In all the architectures, the spectral norm of the gradients estimated in the purely supervised objective is smaller
than the augmented objective. This is consistent with the theoretical analyses presented in Section 3. The main reason for
such non-vanishing gradient is the feedback from discriminator. As marked by ? in Figure 1 and 2, the adversarial regular-
ization is at least as good as sole supervision in terms of the number iterations required to attain convergence. In other words,
it ensures faster convergence in an over-parameterized setting with potential improvement in accuracy.

Figure 3 offers empirical support to sub-optimality gap in the adversarial setting. Here, we observe the significance of near
optimal region, i.e., εwith 32 hidden units. Since the expressive power of such a network is very small in both the approaches,
evidently neither of those meets the convergence criteria. However, as the capacity increases, the supervised cost which is
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Figure 3. Comparison of optimal empirical risk on MNIST. Adversarial regularization converges faster.

(b)

N
o
. 
o
f 

E
p
o
c
h

s

No. of Hidden Units (log scale)
2

(a)

E
rr

o
r

No. of Hidden Units (log scale)
2

Figure 4. Comparison on MNIST. (a) Optimal empirical risk. (b) Iteration Complexity. Adversarial regularization attains tighter ε-
stationary point at an optimal rate.
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Figure 5. Comparison of gradient updates between supervised and augmented objective as observed in the hidden layer on MNIST.

common in both the approaches guides them to a tiny landscape around optimum, and thereby it satisfies the assumptions of
Theorem 1. It is to be noted that the tightness of the reported bounds is asserted in the near optimal region. This is evident
from the stability of the Lipschitz constant L over iterations as shown in Figure 1 and 2. Under this condition, the optimal
empirical risk in the augmented objective can be provably better than sole supervision as predicted by the proposed theorems.
Figure 3 supports this theory as the augmented objective consistently achieves better performance either by risk or by the rate
of convergence for networks with sufficient expressive power.

Furthermore, we compare the optimal empirical risk and iteration complexity with different number of hidden units in
Figure 4. To better interpret the theorems, one can infer from Figure 4 (a) that the value of ε in Theorem 1 is approximately
equal to 0.005. The number of epochs required to find a first order stationary point in adversarial learning is always less than
or equal to supervised learning, which validates our theorems. The value of ε is more relevant to the present body of analysis
as it is typically sought after in practice. Moreover, it is not hard to estimate δ in some rare occurences where the mapping
function is approximated by the discriminator.

To this end, it is quite clear that the augmented objective achieves faster convergence as compared to the purely supervised
objective. However, it is necessary to verify this hypothesis in other architectures. As shown in Figure 5 and 6, the estimated
gradient vanishes within the tiny landscape of optimal empirical risk. Further, the adversarial regularization accelerates
gradient updates and attains minimal empirical risk compared to sole supervision. It is evident from Figure 7 where we
observe this particular phenomenon across a wide variety of architectures. Although the difference in empirical risk is
minimal, it is always better to discover a first order stationary point relatively faster without having to loose any risk benefits.
From another perspective, the notion of multiple critical points in deep neural networks acts in favor of adversarial learning
that allows faster convergence. This provides a reasonable justification to the practical success of regularized adversarial
learning [44, 5, 12, 34].
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Figure 6. Comparison of gradient updates between supervised and augmented objective as observed in the top layer on MNIST.
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Figure 8. Comparison on CIFAR10. (a) Optimal empirical risk. (b) Iteration Complexity. Adversarial regularization attains tighter ε-
stationary point at an optimal rate.

D.2.2 Results on CIFAR10

These theorems also justify the experiments conducted on CIFAR10 dataset. As shown in Figure 8, supervised learning
with adversarial regularization performs better than sole supervision both in terms of optimal empirical risk and iteration
complexity. Here, ε is found to be approximately equal to 0.06. Similar to MNIST, we observe the vanishing gradient issue
on CIFAR10, which is shown in Figure 9 and 10. Figure 11 illustrates how model capacity correlates with empirical risk,
and thereby satisfies the assumption of Theorem 1. Across a wide variety of architectures, the supervised learning with
adversarial regularization can be better than sole supervision both in terms of optimal empirical risk and iteration complexity
as predicted by our theory. Although both the methods start with almost identical initial empirical risk, as shown in Figure 11,
the augmented objective allows to traverse through a shorter path and attain minimal risk upon convergence. It is to be noted
that the slight difference in error at the begining is because of adversarial acceleration in the first step itself.
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Figure 9. Comparison of gradient updates between supervised and augmented objective as observed in the hidden layer on CIFAR10.
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Figure 10. Comparison of gradient updates between supervised and augmented objective as observed in the top layer on CIFAR10.
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Figure 11. Comparison of optimal empirical risk on CIFAR10.

D.2.3 Results on Tiny ImageNet

To disentangle the effect of adversarial acceleration on a large-scale dataset, we experiment with several variants of adver-
sarial networks. In this setting, the primary function approximator, f(θ;x) consists of 6 Conv2d layers with stride (2, 2).
The output is taken from a Linear layer with 200 classes on top of the final Conv2d layer. In practice, we observe that a
shallow discriminator is usually sufficient to offer adversarial acceleration. We therefore choose a two layer fully connected
network with 1024 hidden nodes. For optimization, ADAM is used with a learning rate of 0.001. Here, the discriminator is
updated once for every single update of the generator.

Since the augmented objective requires training of the discriminator in addition to the generator, it takes more training
time to reach convergence as given by WGAN in Table 1. However, when we introduce Gradient Penalty (GP) and Weight
Clipping (WC), the ablation study suggests a significant acceleration in training to achieve similar performance. Interestingly,
the proposed hypothesis of adversarial acceleration holds on several variants of adversarial training objectives and activation
functions. With the results on three different datasets, we have empirically verified the robustness of the proposed theorems.
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Architecture No. Layers Activation
No. Epochs (Runtime)
Sup

No. Epochs (Runtime)
Aug Hypothesis

WGAN 7 ReLU 1000 (159 m) 1000 (366 m) X
WGAN + GP [11] 7 ReLU 1000 (159 m) 110 (64 m) X
WGAN + WC [1] 7 ReLU 1000 (159 m) 84 (32 m) X
DCGAN [31] 7 Sigmoid 1000 (159 m) 80 (29 m) X

Table 1. Hypothesis Testing on Various Adversarial Training Configurations.
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Figure 12. Comparison of gradient updates between supervised and augmented objective as observed in the first layer on MNIST. (a)
Multi-Layer Perceptron. (b) Exponential Activation. (c) Residual Network. (d) Dense Network.

Architecture No. Layer Activation No. ResBlock No. DenseBlock
No. Epoch
Sup

No. Epoch
Aug Hypothesis

MLP-Deep 6 ELU 2 0 391 55 X
CNN-ResNet 6 ReLU 2 0 215 41 X
CNN-DenseNet 6 ReLU 2 1 163 39 X
CNN-DenseNet-L1 6 ReLU 2 1 1000 39 X
CNN-DenseNet-L2 6 ReLU 2 1 155 39 X
CNN-ResNet-AvgPool 6 ReLU 2 0 109 29 X

Table 2. Hypothesis Testing on Various Generator Network Configurations.

Next, we verify this hypothesis on more practical generator networks.

D.3. Practical Architectures

To study the impact of these findings in realistic situations, we experiment on various generator network configurations.
As shown in Figure 12 and 13, the issue of vanishing gradient is persistent across these experimented configurations3. Fur-
thermore, the discussion on adversarial acceleration is also supported by Figure 14. In addition, Table 2 shows that the
proposed hypothesis: adversarial regularization achieves tighter ε-stationary point at an optimal rate holds under practical
circumstances. More specifically, we observe accelerated gradient updates not only in two layer ReLU networks, but also
in deep MLPs with Exponential Linear Unit (ELU) activations, convolution layers, skip connections, dense connections, L1

regularized networks, and L2 regularized networks. Thus, the augmented objective owes its benefits to adversarial learning
at a fundamental level.

3The number of layers is reasonably high given the complexity of the MNIST dataset. Note that one can efficiently classify the MNIST digits by a two
layer fully connected network.
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Figure 13. Comparison of gradient updates between supervised and augmented objective as observed in the last layer on MNIST. (a)
Multi-Layer Perceptron. (b) Exponential Activation. (c) Residual Network. (d) Dense Network.
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Figure 14. Comparison of optimal empirical risk on MNIST. (a) Multi-Layer Perceptron. (b) Exponential Activation. (c) Residual Network.
(d) Dense Network.

D.4. Generalization Error

The generalization trend in sole supervision is shown in Figure 15(a) and 15(c). As per equation (5), the combined measure
of the Frobenius norm of top layer (FrobV), i.e., ‖V ‖F and distance from initialization of hidden layer (FrobDisU), i.e.,∥∥U − U0

∥∥
F

explains the generalization gap (Gen) on MNIST and CIFAR10. We verify this measure in our experimental
setting and study whether it can explain generalization in adversarial learning. Recall that adversarial learning and sole
supervision share exactly same mapping function (f ), learning algorithm (SGD+momentum) and empirical data distribution
(S). The generalization bound, therefore, is expected to explain the generalization error in adversarial learning with expert
regularization. However, as shown in Figure 15(b) and 15(d), this bound does not fully explain the generalization error
observed in the adversarial setting. In Figure 16, we observe that the relative generalization error of adversarial regularization
can be better than sole supervision. This is feasible for a network with sufficient expressive power to achieve near optimal
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Figure 15. Generalization error on MNIST and CIFAR10. Adversarial training requires new generalization bound.
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Figure 16. Relative generalization. (a) MNIST. (b) CIFAR10. Augmented objective has better relative generalization error.

convergence. We believe that the contribution of the discriminator needs to be efficiently characterized in the formulation of
generalization gap, which we wish to explore as a part of the future work.

E. Discussion on Neural Topology Analysis

E.1. Implementation Details

In Neural Topology Analysis (NTA), we analyze the geometry of neurons present in the hidden layer and the top layer.
Here, three different architectures with 213, 214 and 215 hidden units are used to ensure sufficient expressive power. The
core of our visualization is neural interaction which is modelled by Affinity Propagation (AP) [8, 9]. The number of cluster
centers represents total number of primary processing elements. Since each model has large number of neurons in the hidden
layer, we restrict our topological analysis to a fixed subset of 2048 neurons. Due to extreme time and space complexity in
AP, we first reduce the dimension of neurons in the hidden layer from Rdx (here, dx = 784) to R10 using PCA and thereafter,
to R2 using t-SNE [23]. In the case of top layer, we directly apply t-SNE to map neurons in Rdy to R2 (here, dy = 10). Note
that the absolute units of x and y axes are not important in these neural topology diagrams.

22



Primary processing elements (Aug): 178Primary processing elements (Aug): 222

Primary processing elements (Sup): 231(a)

(c) (d)

40

20

0

-20

-40

40

20

0

-20

-40

40200-20-40

20

0

-20

-40

-20-40-60 20 40 60

Primary processing elements (Sup): 231(b)

40

20

0

-20

-40

-40 -20 0 20 40

Primary processing elements (Aug): 134Primary processing elements (Aug): 242

Primary processing elements (Sup): 234(a)

(c) (d)

-60

-40

-20

0

20

40

Primary processing elements (Sup): 226(b)

-40

-20

0

20

40

-40 -20 0 20 40

-40

-20

0

20

40

60

-40

-20

0

20

40

-40 -20 0 20 40 -60 -40 -20 0 20 40 60

-40 -20 0 20 40

Figure 17. NTA in hidden layer (left) and top layer (right). (a) Initial and (b) final topology in supervised learning. (c) Initial and (d) final
topology in adversarial learning.

(a) (b)

(d)(c)

Figure 18. NTA in the hidden layer with 215 hidden units. (a) Initial and (b) final topology in supervised learning. (c) Initial and (d) final
topology in adversarial learning.

E.2. NTA on MNIST

In the experiments with 214 hidden units, we observe emergence of evolutionary patterns in the adversarial framework.
Figure 17 shows that despite similar topology at initialization, the final topology in regularized adversarial learning changes
drastically. It is quite apparent from Figure 17(d), both in the hidden and the top layers, that adversarially learned weights
lie on a different geometrical surface compared to sole supervision. Particularly intriguing is the self-organization tendency
of these artificial neurons in a topological sense [17]. We observe this sparse self-organization behavior on a wide variety of
architectures, as shown in Figure 18, 19, 20, and 21. In all these configurations, adversarial learning tries to exploit sparsity
in data to reorganize neurons.

Further, we study the neural topology of other fixed subsets of neurons in Figure 22 and 23. In this analysis, we focus on 4
subsets sequentially, each consisting of 2048 neurons. Since we repeatedly observe new patterns even with random seeds, it
ensures that the organization of neurons has indeed changed drastically. Also, we analyze the topology of a randomly selected
subset of 2048 neurons in Figure 24. In addition, Figure 25 shows emergence of global pattern in adversarial learning.
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Figure 19. NTA in the top layer with 215 hidden units. (a) Initial and (b) final topology in supervised learning. (c) Initial and (d) final
topology in adversarial learning.

(a) (b)

(d)(c)

Figure 20. NTA in the hidden layer with 213 hidden units. (a) Initial and (b) final topology in supervised learning. (c) Initial and (d) final
topology in adversarial learning.
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Figure 21. NTA in the top layer with 213 hidden units. (a) Initial and (b) final topology in supervised learning. (c) Initial and (d) final
topology in adversarial learning.

(a) (b)

(d)(c)

Figure 22. NTA in the hidden layer with 213 hidden units. (a) First subset (0-2048) (b) Second subset (2048-4096) (c) Third subset
(4096-6144) (d) Fourth subset (6144-8192) final topology in adversarial learning.

E.3. Perturbation Sensitivity

In Figure 26 and 27, we investigate the sensitivity of the topological diagrams to local perturbation. The perturbation
model follows Gaussian distribution with mean and standard deviation same as that of the fully trained weights. Here, the
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Figure 23. NTA in the top layer with 213 hidden units. (a) First subset (0-2048) (b) Second subset (2048-4096) (c) Third subset (4096-6144)
(d) Fourth subset (6144-8192) final topology in adversarial learning.

(a) (b)

(d)(c)

Figure 24. NTA of a random subset of 2048 neurons with 213 hidden units.(a) Hidden and (b) top layer topology in supervised learning.
(c) Hidden and (d) top layer topology in adversarial learning.

percentage perturbation corresponds to the fraction of the total energy in the weight vectors. For conciseness, we study
sensitivity in the top layer on MNIST. As shown in Figure 26 and 27, the final topology retains sparse representation with
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Figure 25. NTA of all 213 hidden units.(a) Hidden and (b) top layer final topology in supervised learning. (c) Hidden and (d) top layer final
topology in adversarial learning.

low and moderate level Gaussian perturbation. However, we observe slight reduction of sparsity with extreme perturbation
as shown in Figure 27. These experimental results indicate that the sparse nature of neural topology in augmented objective
is not due to minor deviations from the neural topology of sole supervision. Thus, there is a significant difference between
the final topology of adversarial regularization and sole supervision.

E.4. NTA on Over-Parameterization

In Figure 28, we study the neural topology of a network that is trained on randomly labelled pairs of MNIST dataset.
With 213 nodes in the hidden layer, the augmented objective converges to 0.004 MSE after 1000 epochs. It is interesting to
observe these patterns even when trained on a randomly labelled dataset. This purportedly implies that adversarial training is
the predominant source that constitutes the basis of such pattern formation.

E.5. NTA on FashionMNIST

Figure 29 and 30 demonstrate similar pattern formation on three different subsets of the hidden nodes. It is interesting
to note that these patterns are quite different from the patterns observed in MNIST experiments. Nevertheless, these results
favor the arguments on pattern formation due to adversarial interaction.
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Perturbation: 0.0%

Perturbation: 0.088%

Perturbation: 0.887%

Original NTA

Perturbation: 0.0%

Original NTA

Perturbation: 0.088%

Perturbation: 0.887%

Figure 26. NTA in the top layer with 213 hidden units. Comparison of sensitivity to low level Gaussian perturbation. Final topology in
supervised learning (left) and adversarial learning (right).
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Perturbation: 0.0%

Perturbation: 8.809%

Perturbation: 88.163%

Original NTA

Perturbation: 0.0%

Original NTA

Perturbation: 8.809%

Perturbation: 88.163%

Figure 27. NTA in the top layer with 213 hidden units. Comparison of sensitivity to moderate and extreme level Gaussian perturbation.
Final topology in supervised learning (left) and adversarial learning (right).
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Figure 28. NTA in adversarial learning with 213 hidden units. Initial and final topology in hidden layer (first row) and top layer (second
row), respectively.
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(f)(e)

Figure 29. NTA in the hidden layer with 213 hidden units on FashionMNIST. (a) First subset (0-2048) (b) Second subset (2048-4096) (c)
Third subset (4096-6144) initial (left) and final (right) topology in adversarial learning.
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Figure 30. NTA in the top layer with 213 hidden units on FashionMNIST. (a) First subset (0-2048) (b) Second subset (2048-4096) (c) Third
subset (4096-6144) initial (left) and final (right) topology in adversarial learning.
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