
CONSTRAINED POSTERIOR SAMPLING: TIME SERIES
GENERATION WITH HARD CONSTRAINTS

Sai Shankar Narasimhan, Shubhankar Agarwal, Litu Rout,
Sanjay Shakkottai, Sandeep Chinchali
The University of Texas at Austin

{nsaishankar,somi.agarwal,litu.rout}@utexas.edu
{sanjay.shakkottai,sandeepc}@utexas.edu

ABSTRACT

Generating realistic time series samples is crucial for stress-testing models and
protecting user privacy by using synthetic data. In engineering and safety-critical
applications, these samples must meet certain hard constraints that are domain-
specific or naturally imposed by physics or nature. Consider, for example, generat-
ing electricity demand patterns with constraints on peak demand times. This can be
used to stress-test the functioning of power grids during adverse weather conditions.
Existing approaches for generating constrained time series are either not scalable or
degrade sample quality. To address these challenges, we introduce Constrained Pos-
terior Sampling (CPS), a diffusion-based sampling algorithm that aims to project
the posterior mean estimate into the constraint set after each denoising update.
Notably, CPS scales to a large number of constraints (∼ 100) without requiring
additional training. We provide theoretical justifications highlighting the impact
of our projection step on sampling. Empirically, CPS outperforms state-of-the-art
methods in sample quality and similarity to real time series by around 10% and
42%, respectively, on real-world stocks, traffic, and air quality datasets.

1 INTRODUCTION

Synthesizing realistic time series samples can aid in “what-if” scenario analysis, stress-testing
machine learning (ML) models (Rizzato et al., 2022; Gowal et al., 2021), anonymizing private user
data (Yoon et al., 2020), etc. Current approaches for time series generation use state-of-the-art
(SOTA) generative models, such as Generative Adversarial Networks (GANs) (Yoon et al., 2019;
Donahue et al., 2018) and Diffusion Models (DMs) (Tashiro et al., 2021; Alcaraz & Strodthoff, 2023;
Narasimhan et al., 2024), to generate high-fidelity time series samples.

Stock Name
XYZ
Month

September

Opening Price <= Highest Price
Closing Price <= Highest Price
Opening Price >= Lowest Price
Closing Price >= Lowest Price
Mean(Closing Price) == $35

Correlated Stocks

Days

Stock Price

Metadata

Constraints

CPS

Highest Price Lowest Price

Opening Price Closing Price

Figure 1: Our Proposed Constrained Posterior Sam-
pling (CPS) Approach. CPS is a novel diffusion-based
sampling approach to generate time series samples that
adhere to hard constraints. Here, we show an example
of generating the daily stock price time series, where
CPS ensures that the generated stock prices adhere to
natural constraints such as the bounds on the opening
and closing prices of the stock.

However, generating realistic and high-fidelity
time series samples requires strict adherence to
various domain-specific constraints. For exam-
ple, consider generating the daily Open-high-
low-close (OHLC) chart for the stock price of
an S&P 500 company. The generated time se-
ries samples should have opening and closing
stock prices bounded by the high and low values.
Similarly, consider generating stock price time
series with a user-specified measure of volatility
to stress-test trading strategies. If the gener-
ated samples do not have the exact volatility, the
stress testing results might not be accurate.

On a more general note, the advent of large-scale
generative models for language and vision, like
GPT-4 (Bubeck et al., 2023) and Stable Diffu-
sion (Podell et al., 2023), has increased the focus on constraining the outputs from these models,

1

owing to usefulness and privacy reasons. Note that we cannot clearly define the notion of a constraint
set in these domains. For example, verifying if the image of a hand has 6 fingers is practically hard, as
all deep-learned perception models for this task have associated prediction errors. However, our key
insight is that we can describe a time series through statistical features computed using well-defined
functions. These features can be imposed as constraints, and we can accurately verify the constraint
satisfaction. Hence, the time series domain allows for the development of a new class of constrained
generation algorithms. We first outline the qualities of an ideal constrained time series generator.

1. Training-free approach to include multiple constraints: Training the generative model for a
specific constraint, as in the case of Loss-DiffTime (Coletta et al., 2024), is not scalable. A model
trained to generate samples with specified mean constraints cannot adapt to argmax constraints.

2. Independence from external realism enforcers: Generally, prior works involve a projection step
to a feasible set defined by a set of constraints, which often destroys the sample quality. To address
this, prior approaches (Coletta et al., 2024) rely on external models to enforce realism, in addition
to the generative model, resulting in additional training and complex sampling procedures.

3. Hyperparameter-free approach to constrained generation: The choice of guidance weights
in guidance-based approaches with DMs significantly affects the sample quality. Optimizing for
guidance weights becomes combinatorially hard while dealing with hundreds of constraints.

Given the following requirements, we propose Constrained Posterior Sampling (CPS), a novel
sampling procedure for diffusion-based generative models (check Fig. 1). CPS introduces a projection
step that aims to project the posterior mean estimate into the constraint set after each diffusion
denoising update. We rely on off-the-shelf optimization routines, thereby providing a training and
hyperparameter-free approach to include multiple constraints. Additionally, CPS does not require
external models to enforce realism, as the key intuition in our approach is that the subsequent
denoising steps rectify the adverse effects of the projection steps toward sample quality. To this end,
our contributions in this paper are:

1. We present Constrained Posterior Sampling ((CPS), Fig. 1), a scalable diffusion sampling process
that generates realistic time series samples that belong to a constraint set. Without any additional
training, CPS can handle a large number of constraints without sacrificing sample quality (Fig. 3).

2. We provide a detailed theoretical analysis of the effect of modifying the traditional diffusion
sampling process with CPS. Additionally, we perform convergence analysis for well-studied
settings, such as convex constraint sets and Gaussian prior data distribution, to draw useful insights
for the practical implementation of CPS.

3. Through extensive experiments on six diverse real-world and simulated datasets spanning finance,
traffic, and environmental monitoring, we demonstrate that CPS outperforms SOTA approaches
on sample quality, similarity, and constraint violation metrics (check Fig. 2).

2 PRELIMINARIES

Figure 2: CPS outperforms existing approaches on
real-world datasets. Dynamic Time Warping (DTW)
measures the similarity between the real and the gen-
erated time series. The Train on Synthetic and Test on
Real (TSTR) evaluates a task model on real test data
when the model was trained on synthetic data. Im-
proved TSTR indicates high generated sample quality.
CPS provides 42% and 10% improvements for DTW
and TSTR, respectively, over SOTA methods.

Notations: We denote a time series sample by
x ∈ RK×L. Here, K and L refer to the number of
channels and the horizon, respectively. A dataset
is defined as D = {x1, . . . , xND}, where the su-
perscript i ∈ [1, . . . ND] refers to the sample num-
ber, and ND is the total number of samples in the
dataset. Pdata denotes the real time series data dis-
tribution. xi is the realization of the random vector
Xi, where X1, . . . XND ∼ Pdata. The Probabil-
ity Density Function (PDF) associated with Pdata

is represented by pdata : RK×L → R, where∫
pdata(x)dx = 1. Here,

∫
refers to the integra-

tion operator over RK×L. The notation N (µ,Σ)
refers to the Gaussian distribution with mean µ
and covariance matrix Σ. Similarly, U(a, b) indi-
cates the uniform distribution with non-zero den-
sity from a to b. ∥ · ∥2 is overloaded and indicates
the l2 norm in the case of a vector and the spectral

2

C
P
S

(
O
u
r
s
)

C
O
P

G
u
i
d
e
d

D
i
f
f
T
i
m
e

No
Constraints Add mean

Add mean change,
Day 1 Price

Add argmax,
Day 24 Price

Add max value,
Day 48 Price

Add argmin,
Day 72 Price

Add min value,
Day 96 Price

Generated Sample Real Sample

Figure 3: CPS tracks the real data samples as the number of constraints increases. Increasing the number
of constraints reduces the size of the constraint set, and an ideal approach should effectively generate samples
that resemble the real time series samples that belong to the constraint set. Here, we show a qualitative example
from the Stocks dataset. Observe that CPS accurately tracks the real sample that concurs with the specified
constraints while other approaches suffer.

norm in the case of a matrix. We denote the constraint set C as C = C1
⋂

C2, . . . ,
⋂
CNC

, where NC

is the total number of constraints and
⋂

denotes intersection. Here, Ci = {x | fci(x) ≤ 0} with
fci : RK×L → R ∀ ci ∈ [1, . . . , NC]. λmax(M) and λmin(M) refer to the largest and the smallest
eigen values of the square matrix M . The rank of the matrix M is indicated by rank(M).

Example: The stocks dataset has 6 channels (K = 6) with 96 timestamps in each channel (L = 96).
The first 4 channels represent the opening price (o), the highest price (h), the lowest price (l), and the
closing price (c), and each timestamp represents a day. The OHLC constraint, i.e., the opening and
closing prices should lie between the highest and the lowest prices, is given by o− h ≤ 0, c− h ≤ 0,
l − o ≤ 0, and l − c ≤ 0. Additionally, a mean equality constraint on the closing price is expressed
as 1

L

(∑L
u=1 c(u)

)
− µc ≤ 0 and µc − 1

L

(∑L
u=1 c(u)

)
≤ 0, where µc is the required mean.

2.1 BACKGROUND AND RELATED WORK

GANs (Goodfellow et al., 2014) have been the popular choice for time series generation(Yoon et al.,
2019; Donahue et al., 2018; Srinivasan & Knottenbelt, 2022; Ni et al., 2021). Recently, DMs have
dominated the landscape of image, video, and audio generation (Rombach et al., 2022; Ho et al., 2022;
Kong et al., 2020). Denoising DMs (Ho et al., 2020; Dhariwal & Nichol, 2021) generate samples
by learning to gradually denoise clean data, sampled from the data distribution Pdata, corrupted
with Gaussian noise. Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020) define a
Markovian forward noising process, where the clean data sample x, referred to as z0, is transformed
into zT with iterative Gaussian corruption for T noising steps, such that zT ∼ N (0, I). With abuse
of notation, 0 represents zero mean, and I represents the identity covariance. The forward process
introduces T conditional Gaussian distributions with fixed covariance matrices governed by the
diffusion coefficients ᾱ0, . . . , ᾱT , where ᾱ0 = 1, ᾱt ∈ [0, 1], and ᾱt−1 > ᾱt ∀ t ∈ [1, T]. Formally,
qt(zt | z0) is the PDF of the conditional Gaussian distribution at the forward step t with mean

√
ᾱtz0

and covariance matrix
√
1− ᾱtI. The PDF associated with the marginal distribution at t = 0 is given

by q0 = pdata.

The sample generation or the reverse process is also Markovian, where we autoregressively sample
from T Gaussian distributions with fixed covariance matrices, indicated by PDFs pθ,t(zt−1 | zt) ∀ t ∈
[1, T], to get from zT to z0, where zT ∼ N (0, I). The means of pθ,t(zt−1 | zt) are learned
using neural networks. DDPMs are trained to maximize the log-likelihood of observing the clean
data, i.e., log pθ(z0), where pθ(z0) =

∫
pθ(z0:T)dz1:T . The joint PDF pθ(z0:T) can be factorized

as p(zT)
∏T

t=1 pθ,t(zt−1 | zt), due to the Markovian nature of the reverse process, with p(zT)
representing the PDF of N (0, I). With successive reparametrizations, the training objective can be

3

simplified into the following denoising objective:

Ez0∼Pdata,ϵ∼N (0,I),t∼U(1,T) [∥ϵ− ϵθ(zt, t)∥22], (1)

where ϵθ(zt, t) is trained to estimate the noise ϵ from zt, and zt =
√
ᾱtz0 +

√
1− ᾱtϵ, with t

ranging from 1 to T . Denoising Diffusion Implicit Models (DDIMs) Song et al. (2022) propose a
non-Markovian forward process and, accordingly, a novel mechanism for sample generation given by

zt−1 =
√
ᾱt−1ẑ0(zt; ϵθ) +

√
1− ᾱt−1 − σ2

t ϵθ(zt, t) + σtϵ. (2)

Here, ẑ0(zt; ϵθ) =
zt−

√
1−ᾱtϵθ(zt,t)√

ᾱt
is the posterior mean estimate, and σt is a control parameter that

dictates determinism in the sampling process. Song et al. (2022) show that Eq. 2 corresponds to the
following reverse process:

pθ,t(zt−1 | zt) =
{

pθ,init(z0 | ẑ0(z1; ϵθ)) if t = 1,
qσ,t(zt−1 | zt, ẑ0(zt; ϵθ)) otherwise,

(3)

where qσ,t(zt−1 | zt, ẑ0(zt; ϵθ)) represents the PDF of the Gaussian distribution with mean√
ᾱt−1ẑ0(zt; ϵθ) +

√
1− ᾱt−1 − σ2

t ϵθ(zt, t) and covariance matrix σ2
t I. Similarly, pθ,init(z0 |

ẑ0(z1; ϵθ)) is the PDF of the Gaussian distribution with mean ẑ0(z1; ϵθ) and covariance matrix σ2
1I.

This reverse sampling process can be viewed as obtaining the posterior mean estimate ẑ0(zt; ϵθ) and
transforming it to the noise level for step t− 1. CPS builds on Eq. 2.

Time Series-specific tasks like forecasting (Rasul et al., 2021; Yan et al., 2021; Biloš et al., 2023) and
imputation (Tashiro et al., 2021; Alcaraz & Strodthoff, 2022) have been addressed using conditional
DMs as well as guidance-based approaches (Li et al., 2023). Alcaraz & Strodthoff (2023) and
Narasimhan et al. (2024) have explored conditional time series generation for various domains, such
as medical, energy, etc. These works aim to sample from a conditional distribution. However, there
are limited prior works that focus on generating constrained samples. Recent works (Wang et al.,
2024a;b) focus on generating constrained counterfactual explanations for time series classification
and forecasting by perturbing selected time stamps of a synthesized seed sample. However, these
approaches do not provide any mechanism to induce realism during the constrained generation
process other than staying near the seed sample. Recently, (Coletta et al., 2024) proposed three
approaches - Loss-DiffTime, a training-based approach where constrained samples are generated with
constraints as conditional input to the generator, Guided DiffTime, which uses guidance gradients
from differentiable constraint functions to guide the sample generation towards a constraint set,
and Constrained Optimization Problem (COP), which projects a seed sample to the constraint
set while using the critic function from any Wasserstein GAN (Arjovsky et al., 2017) as a realism
enforcer. Loss-DiffTime is not scalable to new constraints as the generator has to be retrained for
every new constraint, while Guided DiffTime does not guarantee constraint satisfaction even for
convex constraint sets. We compare our proposed approach against Guided DiffTime and COP on
many real-world datasets and highlight our advantages.

Finally, we note that constrained time series generation can be viewed as controlling the outputs of a
generative model. Controlled generation is a well-established class of problems in image generation
and occurs in multiple formulations, such as solving inverse problems (Rout et al., 2023a;b; 2024a;
Chung et al., 2024), personalization (Rout et al., 2024b; Ruiz et al., 2022), text-to-image generation
(Rombach et al., 2022; Ramesh et al., 2022), and text-based image editing (Kawar et al., 2023; Choi
et al., 2023). Indeed, we note that CPS (Sec. 3) can be viewed as a constraint satisfaction (through
projection) approach for time series, in the same spirit as gradient-based image personalization
through diffusions (Rout et al., 2024b). However, these works do not impose hard constraints, as
described in the case of OHLC charts in Sec. 1. Formally, the constrained time series generation
problem is defined as follows:

Problem Setup. Consider a dataset D = {xi}ND
i=1, where ND denotes the number of samples,

xi ∼ Pdata with the density function pdata and xi ∈ RK×L. The goal is to generate xgen ∼ Pdata

such that xgen belongs to the constraint set C = C1
⋂

C2, . . . ,
⋂

CNC , where NC denotes the number
of constraints. Here, Ci = {x | fci(x) ≤ 0} with fci : RK×L → R. To put it more succinctly,

xgen := argmin
x

−log pdata(x) s.t. fci(x) ≤ 0, ∀ ci ∈ [1, NC], (4)

where the objective is to find a maximum likelihood sample in the constraint set.

4

3 CONSTRAINED POSTERIOR SAMPLING

To generate realistic samples with high likelihood, our approach assumes the availability of a pre-
trained diffusion model trained on the dataset D. Given the diffusion denoiser model ϵθ, we propose
Constrained Posterior Sampling (CPS, check Fig. 4) to restrict the domain of a generated sample
without sacrificing sample quality. Described in Algorithm 1, CPS effectively guides the diffusion
denoising process towards the constraint set.

We follow the typical DDIM inference procedure. Starting with a sample from the standard normal
distribution N (0, I) (line 1), we perform sequential denoising (lines 2 to 10). Line 3 refers to the
forward pass through the denoiser to obtain the noise estimate ϵθ(zt, t). After every denoising step,
we obtain the posterior mean estimate ẑ0(zt; ϵθ) (line 4). We then project this estimate towards
the constraint set C to obtain the projected posterior mean estimate ẑ0,pr(zt; ϵθ) (line 5). Later, we
perform a DDIM reverse sampling step with ẑ0,pr(zt; ϵθ) and ϵθ(zt, t) to obtain zt−1 (lines 7-9).

DDIM
Sampling

Projection
Step

Figure 4: Our proposed Constrained Posterior
Sampling approach. We show the graphical
model for one step of denoising in CPS, as out-
lined in Algorithm 1.

The projection step in line 5 solves an optimiza-
tion problem with the objective function 1

2 (∥z −
ẑ0(zt; ϵθ)∥22 + γ(t)Π(z)). The first term of the ob-
jective function ensures that ẑ0,pr(zt; ϵθ) is close to
ẑ0(zt; ϵθ), thereby ensuring that zt−1 is not heavily
perturbed for the denoiser to perform poorly. We
define the constraint violation function Π : RK×L →
R as Π(z) =

∑NC

ci=1 max(0, fci(z)), such that
Π(z) = 0 if z ∈ C and Π(z) > 0 otherwise. For
the denoising step t, the constraint violation function
is scaled by a time-varying penalty coefficient γ(t).
Our key intuition is to design γ(t) as a strictly de-
creasing function of t that takes small values for the
initial denoising steps (t close to T) and tends to ∞
for the final denoising steps. This ensures that the constraint satisfaction is not heavily enforced during
the initial denoising steps when the signal-to-noise ratio in zt is very low. Given the requirements
for the penalty coefficient, we choose γ(t) = e1/(1−ᾱt−1) such that γ(t) is close to 0 for the initial
denoising steps (γ(T) ≃ e) and γ(t) → ∞ for t = 1. Note that our choice of γ(t) ensures that γ(t)
is strictly decreasing with respect to t since ᾱt strictly decreases with t.

Algorithm 1 Constrained Posterior Sampling
Input: Diffusion model ϵθ with T denoising steps,
Noise coefficients {ᾱ0, . . . , ᾱT }, DDIM control parameters
{σ1, . . . , σT }, Constraint violation function Π, Penalty coef-
ficients {γ(1), . . . , γ(T)}.
Output: Synthesized time series sample xgen.
1: Initialize zT ∼ N (0, I)
2: for t from T to 1 do
3: Obtain ϵ̂ = ϵθ(zt, t) ▷ Noise Estimation
4: ẑ0(zt; ϵθ) =

zt−
√
1−ᾱt ϵ̂√
ᾱt

▷ Predicted z0

5: ẑ0,pr(zt; ϵθ) = argminz
1
2

{
∥z − ẑ0(zt; ϵθ)∥22

+γ(t)Π(z)

}
6: ▷ Projection Step
7: zt−1 =

√
ᾱt−1ẑ0,pr(zt; ϵθ) +

√
1− ᾱt−1 − σ2

t ϵ̂
8: ϵ ∼ N (0, I)
9: zt−1 = zt−1 + σtϵ ▷ DDIM Steps

10: end for
11: xgen = z0
12: return xgen

Observe that CPS is the DDIM sam-
pling process with one change. We re-
place the posterior mean estimate ẑ0(zt; ϵθ)
with the projected posterior mean estimate
ẑ0,pr(zt; ϵθ). Additionally, CPS can be
viewed similarly to the penalty-based meth-
ods to solve a constrained optimization
problem. With each progressing denoising
update, the penalty coefficient increases,
thereby pushing the posterior mean esti-
mate towards the constraint set.

We do not add noise after the final denois-
ing step (σ1 = 0). This ensures that the
efforts of the final projection step towards
constraint satisfaction are not compromised
by additional noise. For convex constraint
sets with assumptions on the convexity of
the constraint definition functions fci , we
note that the projection step is an uncon-
strained minimization of a convex function
with the optimal constraint violation value being 0 if γ(1) > 0. With a suitable choice of solvers
(Diamond & Boyd, 2016), the optimal solution can be obtained for these cases, thereby ensuring
constraint satisfaction (Π(ẑ0,pr(z1; ϵθ)) = 0) when γ(1) tends to ∞.

5

Note that CPS satisfies the key requirements of an ideal constrained generation approach. CPS
can handle multiple constraints without any training requirements. Further, CPS does not require
additional critics to enforce realism, as our key intuition is that the successive denoising steps
address the adverse effects of the projection step. Finally, CPS is hyperparameter-free as off-the-shelf
solvers can perform the unconstrained optimization step in line 5. Our key observation is that unlike
heuristically setting the guidance weights (Coletta et al., 2024), we can choose the parameters of the
solvers using principled approaches from the vast optimization literature (Nocedal & Wright, 1999).

3.1 THEORETICAL JUSTIFICATION

Now, we provide a detailed analysis of the effect of modifying the traditional DDIM sampling process
with CPS. For ease of explanation, we consider z ∈ Rn. We indicate the identity matrix in Rn×n as
In. First, we describe the exact distribution from which the samples are generated. For this, we make
the following assumption.
Assumption 1. Let the constraint set be C = {z | fC(z) = 0}, where fC : Rn → R and the penalty
function Π(z) = ∥fC(z)∥22 has L-Lipschitz continuous gradients, i.e., ∥∇Π(u) − ∇Π(v)∥2 ≤
L∥u− v∥2 ∀ u, v ∈ Rn.
Theorem 1. Suppose Assumption 1 holds. Given a denoiser ϵθ : Rn → Rn for a diffusion process
with noise coefficients ᾱ0, . . . , ᾱT , if γ(t) > 0 ∀ t ∈ [1, T], the denoising step in Algorithm 1 is
equivalent to sampling from the following conditional distribution:

pθ,t(zt−1 | zt) =
{

pθ,init(z0 | ẑ0,pr(z1; ϵθ)) if t = 1,
qσ,t(zt−1 | zt, ẑ0,pr(zt; ϵθ)) otherwise.

(5)

Here, pθ,init(z0 | ẑ0,pr(z1; ϵθ)) indicates the PDF of N
(
ẑ0,pr(z1; ϵθ), σ

2
1In
)
, and qσ,t(zt−1 |

zt, ẑ0,pr(zt; ϵθ)) indicates the PDF of N
(√

ᾱt−1ẑ0,pr(zt; ϵθ) +
√

1− ᾱt−1 − σ2
t ϵθ(zt, t), σ

2
t In

)
.

σ1, . . . , σT denote the DDIM control parameters, and γ(t) indicates the penalty coefficient for the
denoising step t in Algorithm 1.

Intuitively, Algorithm 1 can be viewed as replacing ẑ0(zt; ϵθ) with ẑ0,pr(zt; ϵθ) and following the
DDIM sampling process. Therefore, the reverse process PDFs are obtained by replacing ẑ0(zt; ϵθ)
with ẑ0,pr(zt; ϵθ) in Eq. 3. More formally, under Assumption 1, the projection step (line 5) can be
written as a series of gradient updates that transform ẑ0(zt; ϵθ) to ẑ0,pr(zt; ϵθ). Having Lipschitz
continuous gradients for fC allows for fixed step sizes which can guarantee a reduction in the value
of the objective function 1

2 (∥z − ẑ0(zt; ϵθ)∥22 + γ(t)∥fC(z)∥22) with each gradient update. We refer
the readers to Sec. A.1 in the Appendix for the detailed proof. Now, we investigate the convergence
properties for Algorithm 1 under the following assumption.
Assumption 2. The real data distribution is N (µ, In), where µ ∈ Rn, and the constraint set C is
defined as C = {z | Az = y} with A ∈ Rm×n such that rank(A) = n ≤ m. Additionally, for
the real data distribution N (µ, In) and the constraint set C = {z | Az = y}, there exists a unique
solution to Eq. 4, indicated by x∗.

We note that Assumption 2 ensures the existence of a unique solution to the linear problem Ax = y.
While there exist many efficient methods to solve such problems under this assumption, the focus
of this paper is not on solving this problem efficiently. Instead, we use this well-studied problem as
a framework to analyze the convergence properties of Algorithm 1, providing valuable insights for
better practical performance.
Theorem 2. Suppose Assumption 2 holds. For a diffusion process with noise coefficients ᾱ0, . . . , ᾱT ,
where ᾱ0 = 1, ᾱT = 0, ᾱt ∈ [0, 1] ∀ t ∈ [0, T], if ᾱt < ᾱt−1 and γ(t) = 2k(T−t+1)

λmin(ATA)
with any design

parameter k > 1, then in the limit as T → ∞, Algorithm 1 returns xgen such that:

∥xgen − x∗∥2 ≤
√
ᾱ1

k
(∥x∗∥2 + ∥µ∥2) .

We refer the readers to Sec. A.2 in the Appendix for detailed proof. Briefly, the proof in Sec. A.2
indicates that the terminal error ∥xgen − x∗∥2 reduces to 0 as T, k → ∞, thereby ensuring that
Algorithm 1 converges to the true solution. From the proof, we observe that under Assumption 2,
the convergence can be guaranteed when the penalty coefficient is set to very large values for the
final denoising step. This is in accordance with our choice of penalty coefficients which assumes
very large values for the final denoising step.

6

Guided DiffTime COP-FT CPS (Ours)

Air Quality TrafficStocks

Figure 5: CPS outperforms existing baselines with increasing number of constraints. Note that constraints
are the features extracted from real time series samples. We gradually increase the number of constraints imposed
on the generative model. Observe that CPS achieves the lowest DTW score for any number of constraints while
having the best sample quality, indicated by the lowest FTSD metric. This result is in accordance with the
qualitative example shown in Fig. 3.

4 EXPERIMENTS

This section describes the experimental procedure, including the wide range of datasets and metrics
used to evaluate CPS against the state-of-the-art constrained generation approaches.

Datasets: We use real-world datasets from different domains, such as stocks (Yoon et al., 2019), air
quality (Chen, 2019), and traffic (Hogue, 2019). Specifically, we test the performance of CPS on
both conditional and unconditional variants of these datasets. We also evaluate our approach on a
simulated sinusoidal waveforms dataset to generate sinusoids with varying amplitudes, phases, and
frequencies specified as constraints.

Our evaluation procedure is framed to test any approach for generating the maximum likelihood
sample from a constraint set, such that the real time series samples from the constraint set were
never seen during training. To achieve this, from every sample in the test dataset, we first extract an
exhaustive set of features such that only one test sample exists per set of features. These features are
considered constraints, which we impose on the generative model.

Constraints: We extract the following features to be used as constraints - mean, mean consecutive
change, argmax, argmin, value at argmax, value at argmin, values at timestamps 1, 24, 48, 72, & 96.
For the stocks dataset, we additionally impose the natural OHLC constraint, i.e., the opening and
closing prices should be bounded by the highest and the lowest prices. Similarly, for the sinusoidal
waveforms dataset, we extract the locations and values of the peaks and valleys and the trend from a
peak to its adjacent valley. Note that these constraints can be written in the form Ax ≤ 0. Projection
to such constraint sets is easy and can be handled by numerous off-the-shelf solvers (Diamond &
Boyd, 2016; Virtanen et al., 2020). This allows us to analyze the effect of the sampling process
without worrying about the off-the-shelf solvers that influence the projection step. We provide a
budget of 0.01 for constraint violation.

Baselines: We compare against the Constrained Optimization Problem (COP) approach (Coletta
et al., 2024) and its fine-tuning variant, which is referred to as COP-FT. COP projects a random
sample from the training dataset to the required set of constraints, whereas COP-FT projects a
generated sample. Both these variants rely on a discriminator to enforce realism after perturbation.
We also compare our approach against Guided DiffTime (Coletta et al., 2024), a guidance-based
diffusion sampling approach. It is unfair to compare against Loss DiffTime, a training-based approach
proposed by (Coletta et al., 2024), as the other methods were not explicitly trained for adhering to a
constraint set. All baselines, except COP, utilize the same TIME WEAVER-CSDI denoiser backbone
(Narasimhan et al., 2024) for fair comparison.

Metrics: We evaluate the performance of CPS on three fronts - sample quality, ability to track
the test time series, and constraint violation. For sample quality, we use the Frechet Time Series
Distance (FTSD) metric (Narasimhan et al., 2024; Paul et al., 2022) for the unconditional setting and

7

T
r
a
f
f
i
c

T
r
a
f
f
i
c

C
o
n
d
i
t
i
o
n
a
l

A
i
r

Q
u
a
l
i
t
y

A
i
r

Q
u
a
l
i
t
y

C
o
n
d
i
t
i
o
n
a
l

S
t
o
c
k
s

W
a
v
e
f
o
r
m
s

Guided DiffTime COP-FT CPS (Ours)

Generated Samples Real Samples

Figure 6: CPS provides high-fidelity synthetic time series samples that match real time series data.
Here, we show a qualitative comparison between the baselines (Guided DiffTime and COP-FT) and CPS for
six different experimental settings. As described in Sec. 4, the real test time series samples from which the
constraints are extracted are shown in blue. Observe that across datasets, CPS generates high-fidelity samples
that match the ground truth, while the baselines suffer to generate meaningful qualitative results.

the Joint Frechet Time Series Distance (J-FTSD) metric (Narasimhan et al., 2024) for the conditional
setting. The FTSD metric is also referred to as Context-FID (Paul et al., 2022). For simplicity, we
indicate both these metrics by Frechet Distance or FD. Additionally, we show the Train on Synthetic
and Test on Real (TSTR) metric for sample quality. For TSTR, we choose random imputation as
the task with 75% masking. We train the TimesNet model (Wu et al., 2023) for imputation on the
synthesized training data, generated with constraints, and evaluate the trained model on the real test
data for imputation performance. We report the mean squared error (MSE) on the real test set as the
TSTR metric. Lower MSE indicates accurate modeling of the true data distribution.

From our evaluation procedure, note that we aim to enforce one test sample per set of constraints.
Therefore, an ideal approach is expected to generate a sample that is similar to that single test
sample. To estimate this, we report the Dynamic Time Warping (DTW) metric (Müller, 2007) and
the Structural Similarity Index Measure (SSIM) metric (Nilsson & Akenine-Möller, 2020). Though
SSIM is typically used for images, in essence, both these metrics capture the similarity between the
generated sample and the real test sample that belongs to the constraint set. Similarly, for constraint

8

METRIC APPROACH AIR QUALITY
AIR QUALITY
(CONDITIONAL) TRAFFIC

TRAFFIC
(CONDITIONAL) STOCKS WAVEFORMS

GUIDED
DIFFTIME

0.7457 3.1883 0.5351 0.5638 1.2575 0.3108

COP-FT 0.3793 0.9931 0.8156 0.8135 0.0759 1.8419
COP 0.2165 27.9425 0.9242 43.2472 0.0701 1.6627

FRECHET
DISTANCE
(↓) CPS (OURS) 0.0234 0.6039 0.2077 0.2812 0.0023 0.0029

GUIDED
DIFFTIME

0.29±0.015 0.25±0.003 0.30±0.01 0.28±0.01 0.05±0.001 0.005±0.001

COP-FT 0.23±0.005 0.19±0.002 0.32±0.01 0.28±0.01 0.048±0.001 0.023±0.001
COP 0.22±0.002 0.22±0.003 0.33±0.01 0.32±0.01 0.048±0.001 0.024±0.001

TSTR
(↓)

CPS (OURS) 0.19±0.003 0.19±0.003 0.29±0.01 0.28±0.01 0.041±0.001 0.005±0.001
GUIDED
DIFFTIME

6.74±8.18 4.28±5.66 4.38±1.25 1.31±1.01 7.84±7.24 1.67±1.15

COP-FT 3.52±2.08 2.01±1.24 4.61±1.08 1.26±0.87 0.90±1.41 1.19±0.64
COP 3.72 ± 2.14 3.72 ± 2.12 5.16 ± 1.34 4.94 ± 1.08 0.88 ± 1.39 1.16 ± 0.65

DTW
(↓)

CPS (OURS) 2.35±1.48 1.83±1.16 3.41±1.47 0.84±0.62 0.20±0.71 0.23±0.17
GUIDED
DIFFTIME

0.18±0.13 0.38±0.18 0.16±0.16 0.9±0.11 0.09±0.09 0.37±0.3

COP-FT 0.19±0.11 0.48±0.16 0.10±0.14 0.89±0.14 0.15±0.10 0.35±0.11
COP 0.17±0.11 0.17±0.11 0.09±0.13 0.09±0.13 0.14±0.09 0.39±0.12

SSIM
(↑)

CPS (OURS) 0.38±0.15 0.52±0.15 0.31±0.20 0.95±0.07 0.73±0.26 0.96±0.05
GUIDED
DIFFTIME

1.0 1.0 0.99 0.89 1.0 0.933

COP-FT 0.0 0.0 0.0 0.0 0.0 0.003
COP 0.0 0.0 0.005 0.0 0.0 0.008

CONSTRAINT
VIOLATION
RATE
(↓) CPS (OURS) 0.0 0.0 0.0 0.0 0.0 0.0

GUIDED
DIFFTIME

23.21 16.35 0.50 0.15 1128.22 5.23

COP-FT 0.0 0.0 0.0 0.0 0.0 0.0002
COP 0.0 0.0 0.0001 0.0 0.0 0.0003

CONSTRAINT
VIOLATION
MAGNITUDE
(↓) CPS (OURS) 0.0 0.0 0.0 0.0 0.0 0.0

Table 1: CPS outperforms existing baselines on sample quality and similarity metrics. Yellow corresponds
to sample quality metrics, and orange and violet correspond to similarity and constraint violation metrics,
respectively. The best approach is shown in bold for each metric. Overall, we observe that CPS maintains high
sample quality (very low FD and TSTR values) and the highest similarity with real time series samples (best
values for the DTW and SSIM metrics). The mean and standard deviation for the TSTR values are obtained
from the results for 3 seeds. Our key intuition is that the adverse effects of the projection step are nullified by the
subsequent denoising steps. Note that as the constraints are all convex, the COP variants and CPS can achieve
very low constraint violation.

violation, we report the ratio of the generated samples that do not belong to the constraint set to the
total number of test samples. We also report the average constraint violation magnitude.

A detailed discussion on the baselines, metrics, etc., is provided in Sec. D.3 and Sec. B of the
Appendix, respectively. Across all metrics, CPS outperforms the baselines on real-world and
simulated datasets in conditional and unconditional settings. We provide intuitive reasons, backed by
empirical evidence, for these performance gains by answering the following key questions:

How well does CPS generate realistic samples that belong to the constraint set? We argue about
the performance of CPS based on the sample quality and the constraint violation metrics in Table 1.
As the constraint sets used in our experiments are convex, both CPS and COP variants can almost
always ensure constraint satisfaction using off-the-shelf solvers. However, Guided DiffTime struggles
severely to generate samples that belong to the constraint set. This is clearly observed in the stocks
dataset, where Guided DiffTime has an average constraint violation magnitude of 1128. With respect
to sample quality, we observe that CPS provides the lowest FD and TSTR values.

Even though Guided DiffTime provides comparable TSTR values for some settings, we note that the
generated samples are very less likely to belong to the constraint set. Therefore, guidance gradients
alone are insufficient to drive the sample generation process to the constraint set. Similarly, there
exists a considerable difference in performance between both COP variants, specifically for the
conditional setting. Here, our key observation is that conditional generation provides a seed sample
for COP-FT that lies close to the constraint set. Therefore, projection does not degrade the sample
quality by a lot. However, the sample quality degradation due to projection is significant for COP,
and it can be observed through very high values of J-FTSD in Table 1. Therefore, our key insight is
that COP is influenced by the choice of initial seed.

Does CPS handle unnatural artifacts that typically occur due to the projection step? While
imposing constraints on the generation process, we note that even though Guided DiffTime generates
a realistic sample, it fails to adhere to the constraints. On the other hand, COP variants adhere to
constraints but generate samples with unnatural artifacts induced by the projection step. However,

9

our key intuition is that CPS circumvents such artifacts using the iterative projection and denoising
updates, where the adverse effects of the projection step are nullified by the subsequent denoising steps.
The difference between the baseline approaches and CPS is significantly pronounced specifically in
the waveforms dataset (check Fig. 6). The stark contrast between the generated sinusoid from CPS
and other baselines is empirically supported with a 100× reduction in the FD value.

How does CPS perform in comparison with baselines for a large number of constraints? We
consider the stocks dataset as the OHLC condition introduces more than 400 constraints. With a large
number of constraints, the feasible set size reduces. This necessitates the requirement of accurate
guidance to generate samples from such constraint sets. In such settings, Guided DiffTime performs
poorly. This can be attributed to the interaction between gradients for each constraint violation. The
combination of these gradients, if not scaled appropriately, leads to poor guidance. Additionally,
finding the correct set of guidance weights is practically very hard for a large number of constraints.
Similarly, projection to small constraint sets affects the sample quality of COP variants, specifically
when the initial seed is far away from the constraint set. While the baselines suffer with an increasing
number of constraints, CPS gets rid of these issues by alternating projection and denoising updates.
We observe this through the qualitative example from the stocks datasets in Fig. 3. Quantitatively, we
observe 14.5% improvement in the TSTR and 67% improvement in the FD metric when compared
against the best-performing baseline.

Does CPS track the real test samples that adhere to the same set of constraints? For a large
number of constraints or a small constraint set, we expect the generated samples that satisfy the
constraints to have a high degree of similarity with the real test samples from which we extract the
constraints. To this end, we denote tracking real test samples as the property to have better similarity
scores with the real sample as the number of constraints increases. In Fig. 5, we note that CPS
outperforms all baselines in the DTW metric for any number of constraints, thereby showing higher
similarity with the real test samples. Note that out of all approaches, CPS has the best reduction in
the DTW scores as the number of constraints increases. Simultaneously, we also note that the sample
quality is unaffected or even improves for CPS with increasing constraints (lower FD scores). We
observe that CPS’s performance is consistent across multiple real-world datasets, with significant
improvements in the DTW values of around 33% for air quality, 77% for stocks, and 22% for the
traffic dataset with respect to the best performing baseline.

Limitations. Although CPS outperforms all the compared baselines in standard evaluation metrics,
we note that the projection step (line 5) in Algorithm 1 can be time-consuming for some applications.
This increases the overall sampling time of CPS, the trade-off being superior performance. In time-
critical applications, the sampling time can be reduced further by leveraging higher order moments
and different initialization schemes (Rout et al., 2024a). Additionally, the projection step is not
necessary after every denoising step and can be adapted to the constraint violation magnitude.

5 CONCLUSION

We proposed Constrained Posterior Sampling – a novel training-free approach for constrained time
series generation. CPS is designed such that it exploits off-the-shelf optimization routines to perform
a projection step towards the constraint set after every denoising step. Through an array of sample
quality and constraint violation metrics, we empirically show that CPS outperforms the state-of-the-art
baselines in generating realistic samples that belong to a constraint set.

Future work. We aim to apply our approach for constrained trajectory generation in the robotics
domain with dynamics constraints, typically modeled by neural networks. Additionally, constrained
time series generation readily applies to style transfer applications. Hence, we plan on extending
the current work to perform style transfer from one time series to another by perturbing statistical
features.

Reproducibility. The pseudo-code and hyper-parameter details have been provided in the Appendix
to help reproduce the results reported in the paper. The source code will be released post publication.

10

REFERENCES

Juan Miguel Lopez Alcaraz and Nils Strodthoff. Diffusion-based time series imputation and forecast-
ing with structured state space models. arXiv preprint arXiv:2208.09399, 2022.

Juan Miguel Lopez Alcaraz and Nils Strodthoff. Diffusion-based conditional ecg generation with
structured state space models. Computers in Biology and Medicine, 163:107115, 2023.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan, 2017. URL https:
//arxiv.org/abs/1701.07875.

Marin Biloš, Kashif Rasul, Anderson Schneider, Yuriy Nevmyvaka, and Stephan Günnemann.
Modeling temporal data as continuous functions with stochastic process diffusion, 2023. URL
https://arxiv.org/abs/2211.02590.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi, Marco Tulio
Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments with gpt-4,
2023. URL https://arxiv.org/abs/2303.12712.

Song Chen. Beijing Multi-Site Air-Quality Data. UCI Machine Learning Repository, 2019. DOI:
https://doi.org/10.24432/C5RK5G.

Jooyoung Choi, Yunjey Choi, Yunji Kim, Junho Kim, and Sungroh Yoon. Custom-edit: Text-guided
image editing with customized diffusion models, 2023. URL https://arxiv.org/abs/
2305.15779.

Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models for
inverse problems using manifold constraints, 2024. URL https://arxiv.org/abs/2206.
00941.

Andrea Coletta, Sriram Gopalakrishnan, Daniel Borrajo, and Svitlana Vyetrenko. On the constrained
time-series generation problem. Advances in Neural Information Processing Systems, 36, 2024.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Steven Diamond and Stephen Boyd. Cvxpy: a python-embedded modeling language for convex
optimization. J. Mach. Learn. Res., 17(1):2909–2913, jan 2016. ISSN 1532-4435.

Chris Donahue, Julian McAuley, and Miller Puckette. Adversarial audio synthesis. arXiv preprint
arXiv:1802.04208, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian Stimberg, Dan Andrei Calian, and
Timothy A Mann. Improving robustness using generated data. Advances in Neural Information
Processing Systems, 34:4218–4233, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. Advances in Neural Information Processing Systems, 35:8633–8646,
2022.

John Hogue. Metro Interstate Traffic Volume. UCI Machine Learning Repository, 2019. DOI:
https://doi.org/10.24432/C5X60B.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

11

https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/2211.02590
https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2305.15779
https://arxiv.org/abs/2305.15779
https://arxiv.org/abs/2206.00941
https://arxiv.org/abs/2206.00941

Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri,
and Michal Irani. Imagic: Text-based real image editing with diffusion models, 2023. URL
https://arxiv.org/abs/2210.09276.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. arXiv preprint arXiv:2009.09761, 2020.

Yan Li, Xinjiang Lu, Yaqing Wang, and Dejing Dou. Generative time series forecasting with diffusion,
denoise, and disentanglement, 2023. URL https://arxiv.org/abs/2301.03028.

Calvin Luo. Understanding diffusion models: A unified perspective. arXiv preprint arXiv:2208.11970,
2022.

Meinard Müller. Dynamic time warping. Information retrieval for music and motion, pp. 69–84,
2007.

Sai Shankar Narasimhan, Shubhankar Agarwal, Oguzhan Akcin, Sujay Sanghavi, and Sandeep Chin-
chali. Time weaver: A conditional time series generation model. arXiv preprint arXiv:2403.02682,
2024.

Hao Ni, Lukasz Szpruch, Marc Sabate-Vidales, Baoren Xiao, Magnus Wiese, and Shujian Liao.
Sig-wasserstein gans for time series generation, 2021. URL https://arxiv.org/abs/
2111.01207.

Jim Nilsson and Tomas Akenine-Möller. Understanding ssim, 2020. URL https://arxiv.org/
abs/2006.13846.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

Jeha Paul, Bohlke-Schneider Michael, Mercado Pedro, Kapoor Shubham, Singh Nirwan Rajbir,
Flunkert Valentin, Gasthaus Jan, and Januschowski Tim. Psa-gan: Progressive self attention gans
for synthetic time series, 2022. URL https://arxiv.org/abs/2108.00981.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis, 2023. URL https://arxiv.org/abs/2307.01952.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising
diffusion models for multivariate probabilistic time series forecasting, 2021. URL https:
//arxiv.org/abs/2101.12072.

Matteo Rizzato, Nicolas Morizet, William Maréchal, and Christophe Geissler. Stress testing electrical
grids: Generative adversarial networks for load scenario generation. Energy and AI, 9:100177,
2022. ISSN 2666-5468. doi: https://doi.org/10.1016/j.egyai.2022.100177. URL https://www.
sciencedirect.com/science/article/pii/S2666546822000295.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Litu Rout, Advait Parulekar, Constantine Caramanis, and Sanjay Shakkottai. A theoretical jus-
tification for image inpainting using denoising diffusion probabilistic models. arXiv preprint
arXiv:2302.01217, 2023a.

Litu Rout, Negin Raoof, Giannis Daras, Constantine Caramanis, Alex Dimakis, and Sanjay Shakkottai.
Solving linear inverse problems provably via posterior sampling with latent diffusion models. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023b. URL https:
//openreview.net/forum?id=XKBFdYwfRo.

Litu Rout, Yujia Chen, Abhishek Kumar, Constantine Caramanis, Sanjay Shakkottai, and Wen-Sheng
Chu. Beyond first-order tweedie: Solving inverse problems using latent diffusion. In 2024
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024a.

12

https://arxiv.org/abs/2210.09276
https://arxiv.org/abs/2301.03028
https://arxiv.org/abs/2111.01207
https://arxiv.org/abs/2111.01207
https://arxiv.org/abs/2006.13846
https://arxiv.org/abs/2006.13846
https://arxiv.org/abs/2108.00981
https://arxiv.org/abs/2307.01952
https://arxiv.org/abs/2101.12072
https://arxiv.org/abs/2101.12072
https://www.sciencedirect.com/science/article/pii/S2666546822000295
https://www.sciencedirect.com/science/article/pii/S2666546822000295
https://openreview.net/forum?id=XKBFdYwfRo
https://openreview.net/forum?id=XKBFdYwfRo

Litu Rout, Yujia Chen, Nataniel Ruiz, Abhishek Kumar, Constantine Caramanis, Sanjay Shakkottai,
and Wen-Sheng Chu. Rb-modulation: Training-free personalization of diffusion models using
stochastic optimal control, 2024b. URL https://arxiv.org/abs/2405.17401.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2022. URL
https://arxiv.org/abs/2010.02502.

Padmanaba Srinivasan and William J Knottenbelt. Time-series transformer generative adversarial
networks. arXiv preprint arXiv:2205.11164, 2022.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based diffu-
sion models for probabilistic time series imputation. Advances in Neural Information Processing
Systems, 34:24804–24816, 2021.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Zhendong Wang, Isak Samsten, Ioanna Miliou, Rami Mochaourab, and Panagiotis Papapetrou.
Glacier: guided locally constrained counterfactual explanations for time series classification.
Machine Learning, pp. 1–31, 2024a.

Zhendong Wang, Isak Samsten, Ioanna Miliou, and Panagiotis Papapetrou. Comet: Constrained
counterfactual explanations for patient glucose multivariate forecasting. In 2024 IEEE 37th
International Symposium on Computer-Based Medical Systems (CBMS), pp. 502–507. IEEE,
2024b.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis, 2023. URL https://arxiv.
org/abs/2210.02186.

Tijin Yan, Hongwei Zhang, Tong Zhou, Yufeng Zhan, and Yuanqing Xia. Scoregrad: Multivariate
probabilistic time series forecasting with continuous energy-based generative models, 2021. URL
https://arxiv.org/abs/2106.10121.

Jinsung Yoon, Daniel Jarrett, and Mihaela Van der Schaar. Time-series generative adversarial
networks. Advances in neural information processing systems, 32, 2019.

Jinsung Yoon, Lydia Drumright, and Mihaela Schaar. Anonymization through data synthesis using
generative adversarial networks (ads-gan). IEEE Journal of Biomedical and Health Informatics,
PP:1–1, 03 2020. doi: 10.1109/JBHI.2020.2980262.

13

https://arxiv.org/abs/2405.17401
https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/2210.02186
https://arxiv.org/abs/2210.02186
https://arxiv.org/abs/2106.10121

APPENDIX

A PROOFS

In this section, we provide the detailed proof for the theorems stated in the manuscript.

A.1 PROOF OF THEOREM 1

We first describe the assumption on the constraint set. The constraint set is defined as C = {z |
fC(z) = 0}, where fC : Rn → R, and the penalty function Π(z) = ∥fC(z)∥22 has L-Lipschitz
continuous gradients, i.e., ∥∇Π(u)−∇Π(v)∥2 ≤ L∥u− v∥2 ∀ u, v ∈ Rn.

Line 7 of the Algorithm 1 modifies the traditional DDIM sampling by replacing ẑ0(zt; ϵθ) with
ẑ0,pr(zt; ϵθ). Without this modification, the DDIM sampling denotes the following reverse process
when started with xT ∼ N (0n, In), where 0n indicates the zero mean vector in Rn and In is the
identity matrix in Rn×n:

pθ,t(zt−1 | zt) =
{

pθ,init(z0 | ẑ0(z1; ϵθ)) if t = 1,
qσ,t(zt−1 | zt, ẑ0(zt; ϵθ)) otherwise,

(6)

where qσ,t(zt−1 | zt, ẑ0(zt; ϵθ)) represents the PDF of the Gaussian distribution

N
(√

ᾱt−1ẑ0(zt; ϵθ) +
√

1− ᾱt−1 − σ2
t ϵθ(zt, t), σ

2
t In

)
with σt as the DDIM control parameter.

Similarly, pθ,init(z0 | ẑ0(z1; ϵθ)) is the PDF of the Gaussian distribution with mean ẑ0(z1; ϵθ) and
covariance matrix σ2

1In (Song et al., 2022).

Note that sampling from qσ,t(zt−1 | zt, ẑ0(zt; ϵθ)) provides the DDIM sampling step (check Eq. 2).

We reiterate that the main modification with respect to the DDIM sampling approach is the projection
step in line 5 of Algorithm 1. Therefore, we first analyze the projection step,

ẑ0,pr(zt; ϵθ) = argmin
z

1

2

(
∥z − ẑ0(zt; ϵθ)∥22 + γ(t)∥fC(z)∥22

)
. (7)

Here, ẑ0(zt; ϵθ) = zt−
√
1−ᾱtϵθ(zt,t)√

ᾱt
(line 3, predicted z0). We will denote the objective function

1
2

(
∥z − ẑ0(zt; ϵθ)∥22 + γ(t)∥fC(z)∥22

)
as g(z). Note that we replaced the constraint violation func-

tion Π(z) by ∥fC(z)∥22 for this case. Given that fC is a differentiable and convex with ∥fC∥22 having
L-Lipschitz continuous gradients, Eq. 7 can be written as a series of gradient updates with a suitable
step size such that the value of the objective function decreases for each gradient update.

From the statement, we observe that γ(t) > 0 ∀ t ∈ [1, T]. Under this condition and Assumption
1, note that the function g(z) is convex and has

(
2+γ(t)L

2

)
-Lipschitz continuous gradients, as ∥z −

ẑ0(zt; ϵθ)∥22 has 2-Lipschitz continuous gradients, γ(t)∥fC(z)∥22 has (γ(t)L)-Lipschitz continuous
gradients, and the fraction 1

2 makes g(z) to have
(

2+γ(t)L
2

)
-Lipschitz continuous gradients. Let

η be the step size of the projection step. From Nocedal & Wright (1999), we know that η ∈
(0, 2/(2 + γ(t)L)) ensures that the objective function in Eq. 7 reduces after each gradient update.
We denote the gradient update as

nẑ0(zt; ϵθ) =
n−1

ẑ0(zt; ϵθ)− η∇z(g(z))
∣∣
n−1ẑ0(zt;ϵθ)

, (8)

where 0ẑ0(zt; ϵθ) = ẑ0(zt; ϵθ) and ẑ0,pr(zt; ϵθ) =
Npr ẑ0(zt; ϵθ). Here, Npr is the total number of

gradient update steps.

The iteration in Eq. 8 always leads to ẑ0,pr(zt; ϵθ) deterministically. Therefore, the projection step
can be considered sampling from a Dirac delta distribution centered at ẑ0,pr(zt; ϵθ), i.e., δ(z −
ẑ0,pr(zt; ϵθ)). Consequently, using the law of total probability, the reverse process corresponding to
the denoising step t ∀ t ∈ [2, T] in Algorithm 1 is given by

pθ,t(zt−1 | zt) =
∫

pθ,t(zt−1, ẑ0 | zt)dẑ0,

14

where ẑ0 ∈ Rn. This can be simplified using Bayes’ rule as

pθ,t(zt−1 | zt) =
∫

δ(ẑ0 − ẑ0,pr(zt; ϵθ))qσ,t(zt−1 | zt, ẑ0)dẑ0.

The above equation stems from the fact that the distribution of z0 conditioned on zt is a Dirac delta
distribution centered at ẑ0,pr(zt; ϵθ). Since δ(x− y) = δ(y − x) and using the sifting property of a
Dirac delta function

(∫
f(z)δ(a− z)dz = f(a)

)
, we get

pθ,t(zt−1 | zt) = qσ,t(zt−1 | zt, ẑ0,pr(zt; ϵθ)) ∀ t ∈ [2, T]. (9)

Similarly, we repeat the steps for t = 1, which gives

pθ,1(z0 | z1) =
∫

pθ,1(z0, ẑ0 | zt)dẑ0,

pθ,1(z0 | z1) =
∫

δ(ẑ0 − ẑ0,pr(z1; ϵθ))pθ,init(z0 | ẑ0)dẑ0,

pθ,1(z0 | z1) = pθ,init(z0 | ẑ0,pr(z1; ϵθ)).

Combining the two, we get

pθ,t(zt−1 | zt) =
{

pθ,init(z0 | ẑ0,pr(z1; ϵθ)) if t = 1,
qσ,t(zt−1 | zt, ẑ0,pr(zt; ϵθ)) otherwise,

(10)

where qσ,t(zt−1 | zt, ẑ0,pr(zt; ϵθ)) represents the PDF of the Gaussian distribution
N (

√
ᾱt−1ẑ0,pr(zt; ϵθ) +

√
1− ᾱt−1 − σ2

t ϵθ(zt, t), σ
2
t In) with σt as the DDIM control parame-

ter. Similarly, pθ,init(z0 | ẑ0(z1; ϵθ)) is the PDF of the Gaussian distribution with mean ẑ0,pr(z1; ϵθ)
and covariance matrix σ2

1In (Song et al., 2022). This is the same as Eq. 5.

We note that the value of σ1 is set to 0 in Algorithm 1. However, similar to (Song et al., 2022), for
theoretical analysis, we consider a negligible value for σ1 (∼ 10−12) to ensure that the generative
process is supported everywhere. In other words, σ1 is chosen to be so low such that for σ1 ≃ 0,
pθ,init(z0 | ẑ0,pr(z1; ϵθ)) ≃ δ(z0 − ẑ0,pr(z1; ϵθ)).

Now, we show that the exact DDIM reverse process (check Eq. 6) can be obtained from Eq.
10 in the case where there are no constraints. Here, note that in the absence of any constraint,
the projection step can be written as ẑ0,pr(zt; ϵθ) = argminz

1
2∥z − ẑ0(zt; ϵθ)∥22, in which case

ẑ0,pr(zt; ϵθ) = ẑ0(zt; ϵθ).

For t ∈ [2, T], using the law of total probability, we get

pθ,t(zt−1 | zt) =
∫

δ(ẑ0 − ẑ0(zt; ϵθ))qσ,t(zt−1 | zt, ẑ0)dẑ0, (11)

which simplifies further to

pθ,t(zt−1 | zt) = qσ,t(zt−1 | zt, ẑ0(zt; ϵθ)). (12)

The above equation stems from the same sifting property of Dirac delta functions. The same applies
to t = 1, except that after the projection step, since there is no necessity for constraint satisfaction,
we sample from pθ,init(z0 | ẑ0(z1; ϵθ)), which is a Gaussian distribution with mean ẑ0(z1; ϵθ) and
covariance matrix σ2

1In.

Combining both cases, we observe that without any constraints, the exact DDIM reverse process can
be recovered from Algorithm 2 for all t ∈ [1, T].

A.2 PROOF OF THEOREM 2

We note that the intermediate samples in a T -step reverse sampling process are denoted as zT , . . . , z0,
where z0 = xgen and zT ∼ N (0n, In). Once again, we reiterate the assumptions. We consider the
real data distribution to be Gaussian with mean µ ∈ Rn and covariance matrix In, i.e., N (µ, In).
The constraint set C is defined as C = {z | Az = b} with A ∈ Rm×n such that rank(A) = n, where
m ≥ n. Additionally, for the real data distribution N (µ, In) and the constraint set C = {z | Az = y},
there exists a unique solution to Eq. 4, indicated by x∗.

15

Given that rank(A) = n for A ∈ Rm×n with m ≥ n, we note that (ATA)−1 exists. Consequently,
λmin(A

TA) > 0.

From the theorem statement, we have γ(t) = 2k(T−t+1)
λmin(ATA)

, with k > 1. Immediately, we note that for
all t ∈ [1, T], γ(t) > 0. More specifically, t ∈ [1, T], γ(t) > 2

λmin(ATA)
.

The proof is divided into 2 parts. First, we obtain the expression for zt−1 in terms of zt. Then, we
obtain an upper bound for ∥z0 − x∗∥2, which is the same as ∥xgen − x∗∥2, as from Algorithm 1 we
note that z0 = xgen.

First, we note that for deterministic sampling, we have the DDIM control parameters σ1 . . . σT = 0.
Therefore, the DDIM reverse sampling step from Algorithm 1 (line7) can be written as

zt−1 =
√
ᾱt−1ẑ0,pr(zt; ϵθ) +

√
1− ᾱt−1ϵθ(zt, t). (13)

Since the true data distribution is Gaussian, the optimal denoiser ϵ∗(zt, t) can be expressed analytically
for any diffusion step t. Therefore, the deterministic sampling step can be written as

zt−1 =
√
ᾱt−1ẑ0,pr(zt; ϵ

∗) +
√
1− ᾱt−1ϵ

∗(zt, t).

We can obtain an analytical expression for the optimal denoiser from Lemma 1. Using Eq. 27 from
Lemma 1, we note that the optimal denoiser at the diffusion step t is

ϵ∗(zt, t) = −
√
1− ᾱt(

√
ᾱtµ− zt). (14)

Now, we obtain the expression for ẑ0,pr(zt; ϵ∗). Note that the constraint violation function is defined
as Π(z) = ∥y −Az∥22. Consequently, we note that the objective function in line 5 of Algorithm 1,
i.e., 1

2 (∥z − ẑ0(zt; ϵθ)∥22 + γ(t)∥y − Az∥22), is convex with respect to z for γ(t) > 0. As such, we
use Lemmas 1 and 2 to obtain the following expression for ẑ0,pr(zt; ϵ∗):

ẑ0,pr(zt; ϵ
∗) = [In + γ(t)ATA]−1[µ− ᾱtµ+

√
ᾱtzt + γ(t)AT y]. (15)

We substitute the expressions for ϵ∗(zt, t) from Eq. 14 and ẑ0,pr(zt; ϵ
∗) from Eq. 15, respectively, in

addition to replacing y with Ax∗, to obtain zt−1 in terms of zt:

zt−1 =
√
ᾱt−1

[
In + γ(t)ATA

]−1 [
µ− ᾱtµ+

√
ᾱtzt + γ(t)AT y

]
+
√

1− ᾱt−1(−
√
1− ᾱt(

√
ᾱtµ− zt)),

zt−1 =
√
ᾱt−1

[
In + γ(t)ATA

]−1 [
µ− ᾱtµ+

√
ᾱtzt + γ(t)AT y

]
−
√

1− ᾱt−1

√
1− ᾱt

√
ᾱtµ+

√
1− ᾱt−1

√
1− ᾱtzt,

zt−1 =
√
ᾱt−1

[
In + γ(t)ATA

]−1 [
µ− ᾱtµ+

√
ᾱtzt + γ(t)ATAx∗]

−
√

1− ᾱt−1

√
1− ᾱt

√
ᾱtµ+

√
1− ᾱt−1

√
1− ᾱtzt,

zt−1 =
[√

ᾱt−1

√
ᾱt

[
In + γ(t)ATA

]−1
+
√
1− ᾱt−1

√
1− ᾱtIn

]
zt

+
[√

ᾱt−1

[
In + γ(t)ATA

]−1 − ᾱt
√
ᾱt−1

[
In + γ(t)ATA

]−1
]
µ

−
[√

1− ᾱt−1

√
1− ᾱt

√
ᾱtIn

]
µ+ γ(t)

√
ᾱt−1

[
In + γ(t)ATA

]−1
ATAx∗,

zt−1 =
[√

ᾱt−1

√
ᾱt

[
In + γ(t)ATA

]−1
+
√
1− ᾱt−1

√
1− ᾱtIn

]
zt

+
[
(1− ᾱt)

√
ᾱt−1

[
In + γ(t)ATA

]−1
]
µ−

[√
1− ᾱt−1

√
1− ᾱt

√
ᾱtIn

]
µ

+ γ(t)
√
ᾱt−1

[
In + γ(t)ATA

]−1
ATAx∗.

On further simplification, we have

zt−1 =Ktzt + Etµ− Ftµ+ γ(t)
√
ᾱt−1

[
In + γ(t)ATA

]−1
ATAx∗,

where we have the following matrix definitions,

Kt =
[√

ᾱt−1

√
ᾱt

[
In + γ(t)ATA

]−1
+
√

1− ᾱt−1

√
1− ᾱtIn

]
, (16)

16

Et =
[
(1− ᾱt)

√
ᾱt−1

[
In + γ(t)ATA

]−1
]
, (17)

Ft =
[√

1− ᾱt−1

√
1− ᾱt

√
ᾱtIn

]
. (18)

The goal is to obtain the upper bound for ∥xgen − x∗∥2. Note that ∥xgen − x∗∥2 = ∥z0 − x∗∥2. So,
first, we subtract x∗ from both sides to obtain

zt−1 − x∗ =Ktzt + Etµ− Ftµ+ γ(t)
√
ᾱt−1

[
In + γ(t)ATA

]−1
ATAx∗ − x∗.

Further, we add and subtract Ktx
∗ to the right side to obtain

zt−1 − x∗ =Ktzt −Ktx
∗ + Etµ− Ftµ+ γ(t)

√
ᾱt−1

[
In + γ(t)ATA

]−1
ATAx∗ − x∗ +Ktx

∗.

We further simplify the above expression to obtain
zt−1 − x∗ =Kt (zt − x∗) + Etµ− Ftµ+Ktx

∗ +Dtx
∗,

where the matrix definition of Dt is

Dt = γ(t)
√
ᾱt−1

[
In + γ(t)ATA

]−1
ATA− In. (19)

Now, we obtain the expression for ∥zt−1 − x∗∥2 in terms of ∥zt − x∗∥2.
∥zt−1 − x∗∥2 = ∥Kt(zt − x∗) + Etµ− Ftµ+Ktx

∗ +Dtx
∗∥2.

Applying the triangle inequality repeatedly, we get
∥zt−1 − x∗∥2 ≤ ∥Kt(zt − x∗)∥2 + ∥Ktx

∗∥2 + ∥Dtx
∗∥2 + ∥Etµ∥2 + ∥Ftµ∥2. (20)

Before obtaining the upperbound for ∥z0 − x∗∥, for γ(t) > 0, we will first show that
∥Kt∥2, ∥Dt∥2, ∥Et∥2, ∥Ft∥2 < 1 ∀ t ∈ [1, T]. Here ∥Kt∥2 refers to the spectral norm of the
matrix Kt. To show this, we establish a few relationships that will be the recurring theme used in
proving that ∥Kt∥2, ∥Dt∥2, ∥Et∥2, ∥Ft∥2 < 1 ∀ t ∈ [1, T].

The spectral norm of the matrix M is defined as ∥M∥2 = maxx̸=0
∥Mx∥2

∥x∥2
. From this definition, we

immediately note the following two inequalities.

• ∥Mx∥2 ≤ ∥M∥2∥x∥2 as ∥M∥2 = maxx ̸=0
∥Mx∥2

∥x∥2
.

• ∥MN∥2 = maxx ̸=0
∥MNx∥2

∥x∥2
≤ maxx̸=0

∥M∥2∥Nx∥2

∥x∥2
≤ maxx ̸=0

∥M∥2∥N∥2∥x∥2

∥x∥2
=

∥M∥2∥N∥2.
Further, we note that the following are well-established properties for spectral norms and positive
definite matrices. Consider a positive definite matrix M , i.e., M ≻ 0.

• ∥M∥2 is equal to the largest eigen value of M , i.e., λmax(M).
• ∥M−1∥2 = 1

λmin(M) as the eigenvalues of M−1 are the reciprocal of the eigenvalues of M .
• ∥ −M∥2 = ∥M∥2.

We refer the readers to Lemmas 3, 8, and 10, where we show that ∥Kt∥2, ∥Et∥2, ∥Ft∥2 < 1 ∀ t ∈
[1, T], if γ(t) > 0.

Similarly, Lemma 6 shows that ∥Dt∥2 < 1 ∀ t ∈ [1, T], if γ(t) > 2
λminATA

.

We first apply the inequality ∥Mx∥2 ≤ ∥M∥2∥x∥2 to simplify Eq. 20 as follows.
∥zt−1 − x∗∥2 ≤ ∥Kt∥2∥zt − x∗∥2 + ∥Ktx

∗∥2 + ∥Dtx
∗∥2 + ∥Etµ∥2 + ∥Ftµ∥2. (21)

Therefore, we can recursively obtain the upper bound for ∥zt − x∗∥2 in terms of ∥zT − x∗∥2. This
process, repeated T times, provides the upper bound for ∥z0 − x∗∥2.

∥z0 − x∗∥2 ≤ ∥K1∥2∥K2∥2 . . . ∥KT ∥2∥(zT − x∗)∥2
+ (∥K1∥2 + ∥K1∥2∥K2∥2 + · · ·+ ∥K1∥2∥K2∥2 . . . ∥KT−1∥2∥KT ∥2)∥x∗∥2
+ (∥D1∥2 + ∥K1∥2∥D2∥2 + · · ·+ ∥K1∥2∥K2∥2 . . . ∥KT−1∥2∥DT ∥2)∥x∗∥2
+ (∥E1∥2 + ∥K1∥2∥E2∥2 + · · ·+ ∥K1∥2∥K2∥2 . . . ∥KT−1∥2∥ET ∥2)∥µ∥2
+ (∥F1∥2 + ∥K1∥2∥F2∥2 + · · ·+ ∥K1∥2∥K2∥2 . . . ∥KT−1∥2∥FT ∥2)∥µ∥2.

(22)

17

Let λk = maxt (∥K1∥2, ∥K2∥2, . . . , ∥KT ∥2). Since for γ(t) > 0, ∥K1∥2, . . . , ∥KT ∥2 < 1, we note
that λk < 1.

Therefore, ∥K1∥2∥K2∥2 . . . ∥KT ∥2 can be upper bounded by λT
k .

Additionally, note that ∥K1∥2∥K2∥2 ≤ ∥K1∥2 as ∥K2∥2 < 1. Therefore, (∥K1∥2+ ∥K1∥2∥K2∥2+
· · ·+ ∥K1∥2∥K2∥2 . . . ∥KT−1∥2∥KT ∥2) can be upper bounded by T∥K1∥2.

Similarly, (∥K1∥2∥D2∥2 + · · ·+ ∥K1∥2∥K2∥2 . . . ∥KT−1∥2∥DT ∥2) can be upperbounded by (T −
1)∥K1∥2.

The same applies to (∥K1∥2∥E2∥2 + · · ·+ ∥K1∥2∥K2∥2 . . . ∥KT−1∥2∥ET ∥2) and (∥K1∥2∥F2∥2 +
· · ·+ ∥K1∥2∥K2∥2 . . . ∥KT−1∥2∥FT ∥2).
Therefore, the upper bound in Eq. 22 can be simplified as

∥z0 − x∗∥ ≤ λT
k ∥(zT − x∗)∥2 + T∥K1∥2∥x∗∥2 + (∥D1∥2 + (T − 1)∥K1∥2)∥x∗∥2
+ (∥E1∥2 + (T − 1)∥K1∥2)∥µ∥2 + (∥F1∥2 + (T − 1)∥K1∥2)∥µ∥2. (23)

Consequently, in Lemmas 4, 7, 9, 10, we show

∥K1∥2 ≤
√
ᾱ1

1 + γ(1)λmin(ATA)
< 1 if γ(1) > 0,

∥D1∥2 ≤ 1
γ(1)λmin(ATA))−1

< 1 if γ(1) > 2
λmin(ATA)

,

∥E1∥2 ≤ 1− ᾱ1

1 + γ(1)λmin(ATA)
< 1 if γ(1) > 0,

∥F1∥2 = 0. (24)

For our choice of γ(1) = 2kT
λmin(ATA)

, we first note that γ(1) > 0 and γ(1) > 2
λmax(ATA)

for k > 1.
Therefore, we can rewrite the above inequalities as

∥K1∥2 ≤
√
ᾱ1

1 + 2kT
,

∥D1∥2 ≤ 1
2kT−1 ,

∥E1∥2 ≤ 1− ᾱ1

1 + 2kT
,

∥F1∥2 = 0. (25)

Therefore, Eq. 23 can be upper bounded using Eq. 25 as shown below:

∥z0 − x∗∥2 ≤ λT
k ∥(zT − x∗)∥2 + T

(√
ᾱ1

1 + 2kT

)
∥x∗∥2 +

(
1

2kT − 1

)
∥x∗∥2+(

1− ᾱ1

1 + 2kT

)
∥µ∥2 + (T − 1)

(√
ᾱ1

1 + 2kT

)
∥x∗∥2 + 2(T − 1)

(√
ᾱ1

1 + 2kT

)
∥µ∥2.

(26)

As T → ∞, we observe the following:
lim

T→∞
λT
k ∥(zT − x∗)∥2 = 0 (λk < 1) ,

lim
T→∞

T

(√
ᾱ1

1 + 2kT

)
∥x∗∥2 =

(√
ᾱ1

2k

)
∥x∗∥2 (if k > 0),

lim
T→∞

(
1

2kT − 1

)
∥x∗∥2 = 0,

lim
T→∞

(
1− ᾱ1

1 + 2kT

)
∥µ∥2 = 0,

lim
T→∞

(T − 1)

(√
ᾱ1

1 + 2kT

)
∥x∗∥2 =

(√
ᾱ1

2k

)
∥x∗∥2 (if k > 0),

lim
T→∞

2(T − 1)

(√
ᾱ1

1 + 2kT

)
∥µ∥2 =

(√
ᾱ1

k

)
∥µ∥2 (if k > 0).

18

Therefore, in the limit T → ∞, we have

∥z0 − x∗∥2 ≤
√
ᾱ1

k
(∥x∗∥2 + ∥µ∥2) or,

∥xgen − x∗∥2 ≤
√
ᾱ1

k
(∥x∗∥2 + ∥µ∥2) .

Lemma 1. Suppose Assumption 2 holds. Consider a T -step diffusion process with coefficients
ᾱ0, . . . , ᾱT such that ᾱ0 = 1, ᾱT = 0, ᾱt ∈ [0, 1]. The optimal denoiser ϵ∗(zt, t) is given by

ϵ∗(zt, t) = −
√
1− ᾱt(

√
ᾱtµ− zt).

Proof. We first observe the distribution of zt.

For the diffusion forward process, we know that zt =
√
ᾱtz0 +

√
1− ᾱtϵ, where ϵ ∼ N (0n, In).

Note that z0 is a sample from the Gaussian distribution N (µ, In).

Consequently, we note that zt is a sample from the Gaussian distribution N (
√
ᾱtµ+0n, ᾱtIn+(1−

ᾱt)In). On simplification, we note that zt is a sample from N (
√
ᾱtµ, In).

We denote the PDF of zt’s marginal distribution as qt(zt).

Since we are using the optimal denoiser, the reverse process PDF at t, induced by the optimal denoiser,
p∗,t(zt) is the same as the forward process PDF at t, which is qt(zt).

Here, note that in Sec. 2.1, we denote the reverse process PDF as pθ,t, where the reverse process
is governed by the denoiser ϵθ. We replace this notation with p∗,t(zt) as we are using the optimal
denoiser.

Therefore, the score function at t is given by ∇zt log p∗,t(zt) = ∇zt log qt(zt).

The score function for the Gaussian distribution qt(zt) with mean
√
ᾱtµ and covariance matrix In,

i.e., ∇zt(log qt(zt)) is given by
√
ᾱtµ− zt.

Finally, Luo (2022) shows that for the diffusion step t, the optimal denoiser can be obtained from the
score function using the following expression:

ϵ∗(zt, t) = −
√
1− ᾱt∇zt log qt(zt) ⇒ ϵ∗(zt, t) = −

√
1− ᾱt(

√
ᾱtµ− zt). (27)

Lemma 2. Suppose Assumption 2 holds. Consider a T -step diffusion process with coefficients
ᾱ0, . . . , ᾱT such that ᾱ0 = 1, ᾱT = 0, ᾱt ∈ [0, 1]. The projected posterior mean estimate,
ẑ0,pr(zt; ϵθ), from the projection step in line 5 of Algorithm 1 is given by

ẑ0,pr(zt; ϵθ) = [I + γ(t)ATA]−1[µ− ᾱtµ+
√
ᾱtzt + γ(t)AT y],

where the penalty coefficient from Algorithm 1, γ(t) > 0 ∀ t ∈ [1, . . . , T].

Proof. We start with the unconstrained minimization in line 5 of Algorithm 1, given by

ẑ0,pr(zt; ϵθ) = argmin
z

1

2

(
∥z − ẑ0(zt; ϵθ)∥22 + γ(t)∥y −Az∥22

)
.

Note that we replaced the penalty function Π(z) with ∥y −Az∥22, as we are required to generate a
sample that satisfies the constraint y = Az.

19

Since the objective function is convex with respect to z, we obtain the global minimum by setting the
gradient with respect to z to 0, i.e.,

∇z

(
1

2

(
∥z − ẑ0(zt; ϵθ)∥22 + γ(t)∥y −Az∥22

))
= 0,

∇z

(
1

2

(
zT z − 2zT ẑ0(zt; ϵθ) + ẑ0(zt; ϵθ)

T ẑ0(zt; ϵθ)
))

+ γ(t)∇z

(
1

2
∥y −Az∥22

)
= 0,

z − ẑ0(zt; ϵθ) + γ(t)∇z

(
1

2
∥y −Az∥22

)
= 0,

z − ẑ0(zt; ϵθ) + γ(t)∇z

(
1

2

(
yT y + zTATAz − 2yTAz

))
= 0,

z − ẑ0(zt; ϵθ) + γ(t)
(
ATAz −AT y

)
= 0,[

In + γ(t)ATA
]
z −

(
ẑ0(zt; ϵθ) + γ(t)AT y

)
= 0.

Solving this, we obtain the following expression for ẑ0,pr(zt; ϵθ):

ẑ0,pr(zt; ϵθ) = [In + γ(t)ATA]−1(ẑ0(zt; ϵθ) + γ(t)AT y).

Note that the inverse of
[
In + γ(t)ATA

]
exists as ATA ≻ 0 (from Assumption 2) and γ(t) > 0,

which ensures
[
In + γ(t)ATA

]
≻ 0. Further, substituting the expression for ẑ0(zt; ϵθ), we obtain

ẑ0,pr(zt; ϵθ) = [In + γ(t)ATA]−1

[
zt −

√
1− ᾱtϵθ(zt, t)√

ᾱt
+ γ(t)AT y

]
.

Given that Pdata = N (µ, In), for the T -step diffusion process with coefficients ᾱ0, . . . , ᾱT , we use
the expression for the optimal denoiser ϵ∗(zt, t) (check Eq. 27) in place of ϵθ(zt, t) to obtain

ẑ0,pr(zt; ϵ
∗) = [In + γ(t)ATA]−1

[
zt + (1− ᾱt)(

√
ᾱtµ− zt)√

ᾱt
+ γ(t)AT y

]
,

ẑ0,pr(zt; ϵ
∗) = [In + γ(t)ATA]−1

[
zt +

√
ᾱtµ− zt − ᾱt

√
ᾱtµ+ ᾱtzt√

ᾱt
+ γ(t)AT y

]
.

This can be finally simplified to obtain the expression

ẑ0,pr(zt; ϵ
∗) = [In + γ(t)ATA]−1[µ− ᾱtµ+

√
ᾱtzt + γ(t)AT y].

Lemma 3. Suppose Assumption 2 holds. Consider a T -step diffusion process with coefficients
ᾱ0, . . . , ᾱT such that ᾱ0 = 1, ᾱT = 0, ᾱt ∈ [0, 1]. If ᾱt < ᾱt−1 and the penalty coefficients from
Algorithm 1 given by γ(t) > 0 ∀ t ∈ [1, T], the spectral norm of the matrix Kt, ∥Kt∥2, with Kt as
defined in Eq. 16, is less than 1.

Proof. We want to show that

∥Kt∥2 =
∥∥∥[√ᾱt−1

√
ᾱt

[
In + γ(t)ATA

]−1
+
√
1− ᾱt−1

√
1− ᾱtIn

]∥∥∥
2
< 1.

The spectral norm follows the triangle inequality. Therefore, after simplifying the expression with
triangle inequality, we need to show∥∥∥√ᾱt−1

√
ᾱt

[
In + γ(t)ATA

]−1
∥∥∥
2
+
∥∥∥√1− ᾱt−1

√
1− ᾱtIn

∥∥∥
2
< 1.

We note that for γ(t) > 0,
[
In + γ(t)ATA

]
≻ 0, and therefore

[
In + γ(t)ATA

]−1 ≻ 0. Similarly,
In ≻ 0.

Further, we use the identities that if M ≻ 0, then ∥M∥2 = λmax(M), ∥M−1∥2 = 1
λmin(M) , and

∥cM∥2 = |c|∥M∥2.

20

Therefore, ∥In∥2 = 1, ∥
[
In + γ(t)ATA

]−1 ∥2 = 1
λmin([In+γ(t)ATA])

. Further, note that
√
ᾱt−1

√
ᾱt ≥ 0 and

√
1− ᾱt−1

√
1− ᾱt ≥ 0. Substituting these, the inequality simplifies to

√
ᾱt−1

√
ᾱt

λmin([In + γ(t)ATA])
+
√
1− ᾱt−1

√
1− ᾱt < 1.

Therefore, it is sufficient to show that
√
ᾱt−1

√
ᾱt

λmin([In + γ(t)ATA])
< 1−

√
1− ᾱt−1

√
1− ᾱt.

For any diffusion process with noise coefficients ᾱ0, . . . , ᾱT , where ᾱt > ᾱt−1 ∀ t ∈ [1, T],
Lemma 5 shows that

√
ᾱt−1

√
ᾱt ≤ 1−

√
1− ᾱt−1

√
1− ᾱt. Therefore, it is sufficient to show that

λmin(
[
In + γ(t)ATA

]
) > 1.

To proceed further, we use the Weyl’s inequality Horn & Johnson (2012), which states that for
any two real symmetric matrices P ∈ Rn×n and Q ∈ Rn×n, if the eigenvalues are represented
as λmax(P) = λ1(P) >= λ2(P) · · · >= λn(P) = λmin(P), and λmax(Q) = λ1(Q) >=
λ2(Q) · · · >= λn(Q) = λmin(Q), then we have the following inequality:

λi(P) + λj(Q) ≤ λi+j−n(P +Q). (28)

For i = j = n, we have λmin(P) + λmin(Q) ≤ λmin(P +Q).

For P = In and Q = γ(t)ATA with γ(t) > 0, this inequality can be exploited as both these matrices
are real and symmetric. Therefore, we have

λmin(
[
In + γ(t)ATA

]
) ≥ λmin(In) + λmin(γ(t)A

TA), (29)

λmin(
[
In + γ(t)ATA

]
) ≥ 1 + γ(t)λmin(A

TA). (30)

Note that now it is sufficient to show 1 + γ(t)λmin(A
TA) > 1. For γ(t) > 0, this inequality holds

true as λmin(A
TA) > 0 (ATA ≻ 0). Therefore,∥∥∥[√ᾱt−1

√
ᾱt

[
In + γ(t)ATA

]−1
+
√
1− ᾱt−1

√
1− ᾱtIn

]∥∥∥
2
< 1.

Lemma 4. Suppose Assumption 2 holds. Consider a T -step diffusion process with coefficients
ᾱ0, . . . , ᾱT such that ᾱ0 = 1, ᾱT = 0, ᾱt ∈ [0, 1]. If ᾱt < ᾱt−1 and the penalty coefficients from
Algorithm 1 given by γ(t) > 0 ∀ t ∈ [1, T], ∥K1∥2 with Kt as defined in Eq. 16 is given by

∥K1∥2 ≤
√
ᾱ1

1 + γ(1)λmin(ATA)
. (31)

Proof. We want to find an upper bound for

∥Kt∥2 =
∥∥∥[√ᾱt−1

√
ᾱt

[
In + γ(t)ATA

]−1
+
√

1− ᾱt−1

√
1− ᾱtIn

]∥∥∥
2
.

Applying the triangle inequality for spectral norm, we get

∥Kt∥2 ≤
∥∥∥√ᾱt−1

√
ᾱt

[
In + γ(t)ATA

]−1
∥∥∥
2
+
∥∥∥√1− ᾱt−1

√
1− ᾱtIn

∥∥∥
2
.

We use the same simplifications shown in Lemma 3 to obtain

∥Kt∥2 ≤
√
ᾱt−1

√
ᾱt

λmin([In + γ(t)ATA])
+
√

1− ᾱt−1

√
1− ᾱt.

For t = 1, we know that ᾱt−1 = ᾱ0 = 1. Therefore, we obtain

∥K1∥2 ≤
√
ᾱ1

λmin([In + γ(1)ATA])
.

21

Further, the denominator can be lower bounded using Weyl’s inequality, as shown in Eq. 30.
Therefore, we obtain

∥K1∥2 ≤
√
ᾱ1

λmin([In + γ(1)ATA])
≤

√
ᾱ1

1 + γ(1)λmin(ATA)
.

Hence, we have shown that

∥K1∥2 ≤
√
ᾱ1

1 + γ(1)λmin(ATA)
.

Lemma 5. For any T -step diffusion process with coefficients ᾱ0, . . . , ᾱT such that ᾱ0 = 1, ᾱT = 0,
ᾱt ∈ [0, 1] ∀t ∈ [1, T], if ᾱt < ᾱt−1, then

√
ᾱt−1

√
ᾱt < 1−

√
1− ᾱt−1

√
1− ᾱt.

Proof. Squaring on both sides, we get

ᾱt−1ᾱt < 1 + (1− ᾱt−1)(1− ᾱt)− 2
√
1− ᾱt−1

√
1− ᾱt.

After further simplification, we have to show

ᾱt−1ᾱt < (1− ᾱt) + (1− ᾱt−1) + ᾱt−1ᾱt − 2
√

1− ᾱt−1

√
1− ᾱt,

0 < (1− ᾱt) + (1− ᾱt−1)− 2
√

1− ᾱt−1

√
1− ᾱt,

0 < (
√

1− ᾱt−1 −
√
1− ᾱt)

2.

Since ᾱt ̸= ᾱt−1, we know that
√
1− ᾱt−1 ̸=

√
1− ᾱt. Therefore (

√
1− ᾱt−1 −

√
1− ᾱt)

2 > 0.
Therefore, we conclude that

√
ᾱt−1

√
ᾱt < 1−

√
1− ᾱt−1

√
1− ᾱt.

Note that this clearly holds for the edge case t = 1, where we have
√
ᾱ1 < 1, and for t = T , where

we have 0 < 1−
√
1− ᾱT−1. For the choices of ᾱ0, . . . , ᾱT , these clearly hold true.

Lemma 6. Suppose Assumption 2 holds. Consider a T -step diffusion process with coefficients
ᾱ0, . . . , ᾱT such that ᾱ0 = 1, ᾱT = 0, ᾱt ∈ [0, 1] ∀ t ∈ [1, T]. For the penalty coefficients from
Algorithm 1 given by γ(t) > 2

λmin(ATA)
, ∥Dt∥2, with Dt as defined in Eq. 19, is less than 1.

Proof. Note that the matrix Dt is given by,

Dt = γ(t)
√
ᾱt−1

[
In + γ(t)ATA

]−1
ATA− In.

Using the matrix inversion identity, (AB)−1 = B−1A−1, we rewrite Dt as follows.

Dt = γ(t)
√
ᾱt−1

[(
ATA

)−1 [
In + γ(t)ATA

]]−1

− In.

Dt =
√
ᾱt−1

[(
ATA

)−1

γ(t)

[
In + γ(t)ATA

]]−1

− In.

Dt =
√
ᾱt−1

[(
ATA

)−1

γ(t)
+ In

]−1

− In.

We observe that the choice of γ(t) is greater than 0. More precisely, γ(t) > 2
λmin(ATA)

. Now, if

∥ − (ATA)−1

γ(t) ∥2 < 1, then we can apply the Neumann’s series for matrix inversion, which states that
if ∥M∥2 < 1, then

[In −M]−1 =

∞∑
i=0

M i. (32)

22

First, note that ∥ −A∥2 = ∥A∥2. Therefore, ∥ − (ATA)−1

γ(t) ∥2 = ∥ (ATA)−1

γ(t) ∥2 for γ(t) > 0. From the
theorem statement, γ(t) > 0.

Additionally, we know that ∥ (ATA)−1

γ(t) ∥2 = λmax

(
(ATA)−1

γ(t)

)
= 1

γ(t)λmin(ATA)
.

Therefore, it is enough to show that 1
γ(t)λmin(ATA)

< 1 to apply the Neumann’s series.

However, we know that γ(t) > 2
λmin((ATA)−1)

. Therefore, we observe that 1
γ(t)λmin(ATA)

< 1
2 < 1.

Thus, we have shown that ∥ (ATA)−1

γ(t) ∥2 < 1. Therefore, using Eq. 32, we get[
In −

(
− (ATA)−1

γ(t)

)]−1

=

∞∑
i=0

(
(−ATA)−1

γ(t)

)i

= In +

∞∑
i=1

(
(−1)i(ATA)−i

γ(t)i

)
. (33)

The last equality stems from the fact that for any matrix M ∈ Rn×n, M0 = In. Substituting this
expression for the second term in Dt, we get

Dt =
√
ᾱt−1

(∞∑
i=1

(
(−1)i(ATA)−i

γ(t)i

))
+

√
ᾱt−1In − In.

On further simplification, we have

Dt =
√
ᾱt−1

(∞∑
i=1

(
(−1)i(ATA)−i

γ(t)i

))
− (1−

√
ᾱt−1) In.

Computing the spectral norm and using the triangle inequality, we get

∥Dt∥2 =

∥∥∥∥∥√ᾱt−1

(∞∑
i=1

(
(−1)i(ATA)−i

γ(t)i

))
− (1−

√
ᾱt−1) In

∥∥∥∥∥
2

,

≤
√
ᾱt−1

(∞∑
i=1

∥∥∥∥ (−1)i(ATA)−i

γ(t)i

∥∥∥∥
2

)
+ ∥(1−

√
ᾱt−1)In∥2 .

The inequality arises from the triangle inequality for spectral norms. Note that each of the matrices
within the summation is either positive definite or negative definite, and the spectral norms of all
these matrices can be represented as

∥∥∥ (ATA)−i

γ(t)i

∥∥∥
2
. Therefore, we get

∥Dt∥2 ≤
√
ᾱt−1

(∞∑
i=1

∥∥∥∥ (ATA)−i

γ(t)i

∥∥∥∥
2

)
+ (1−

√
ᾱt−1) .

Using the inequality ∥MN∥2 ≤ ∥M∥2∥N∥2 multiple times, we get the following:∥∥∥∥ (ATA)−i

γ(t)i

∥∥∥∥
2

≤ 1

γ(t)i
(∥∥(ATA)−1

∥∥
2

)i
.

Additionally, for the above equation, we used ∥cM∥2 = |c|∥M∥2. Here, c is γ(t), which is greater
than 0. Since ATA ≻ 0, we have

∥∥(ATA)−1
∥∥
2
= 1

λmin(ATA)
. Therefore, we have the following

inequality: ∥∥∥∥ (ATA)−i

γ(t)i

∥∥∥∥
2

≤ 1

γ(t)i

(
1

λmin(ATA)

)i

=
1

(γ(t)λmin(ATA))
i
.

Using this to upper bound ∥Dt∥2, we get

∥Dt∥2 ≤
√
ᾱt−1

(∞∑
i=1

(
1

(γ(t)λmin(ATA))
i

))
+ (1−

√
ᾱt−1) .

23

Finally, the summation of an infinite geometric series of the form a+ a2 + . . . , where a < 1 is a
1−a .

Here, note that we have γ(t) > 1
λmin(ATA)

. Therefore, 1
γ(t)λmin(ATA)

< 1. Finally, we have

∞∑
i=1

(
1

γ(t)i(λmin(ATA))i

)
=

1
γ(t)λmin(ATA)

1− 1
γ(t)λmin(ATA)

=
1

γ(t)λmin(ATA)− 1
.

So, we obtain

∥Dt∥2 ≤
√
ᾱt−1

γ(t)λmin(ATA)− 1
+ (1−

√
ᾱt−1) . (34)

Now, for ∥Dt∥2 < 1, we need to show
√
ᾱt−1

γ(t)λmin(ATA)− 1
+ (1−

√
ᾱt−1) < 1, or

√
ᾱt−1

γ(t)λmin(ATA)− 1
<

√
ᾱt−1.

This simplifies to showing γ(t)λmin(A
TA)− 1 > 1, which is true if γ(t) > 2

λmin(ATA)
. And, from

the statement of the lemma, we know that γ(t) > 2
λmin(ATA)

.

Therefore, we have shown that ∥Dt∥2 < 1 for γ(t) > 2
λmin(ATA)

.

Lemma 7. Suppose Assumption 2 holds. Consider a T -step diffusion process with coefficients
ᾱ0, . . . , ᾱT such that ᾱ0 = 1, ᾱT = 0, ᾱt ∈ [0, 1] ∀ t ∈ [0, T]. For the penalty coefficients from
Algorithm 1 given by γ(1) > 2

λmin(ATA)
, ∥D1∥2, with Dt as defined in Eq. 19, is upper bounded by

∥D1∥2 ≤ 1
γ(1)λmin(ATA)−1

.

Proof. Note that the matrix Dt is given by,

Dt = γ(t)
√
ᾱt−1

[
In + γ(t)ATA

]−1
ATA− In.

From Eq. 34 in Lemma 6, we know that if γ(t) > 1
λmin(ATA)

,

∥Dt∥2 ≤
√
ᾱt−1

γ(t)λmin(ATA)− 1
+ (1−

√
ᾱt−1) .

From the lemma, we know that γ(t) > 2
λmin(ATA)

. Therefore, we use Eq. 34 and substitute for t = 1

and ᾱ0 = 1, we get

∥D1∥2 ≤ 1

γ(1)λmin(ATA)− 1
.

Lemma 8. Suppose Assumption 2 holds. Consider a T -step diffusion process with coefficients
ᾱ0, . . . , ᾱT such that ᾱ0 = 1, ᾱT = 0, ᾱt ∈ [0, 1]. If ᾱt < ᾱt−1∀ t ∈ [1, T] with the penalty
coefficients from Algorithm 1 given by γ(t) > 0, ∥Et∥2 < 1 where Et is defined as in Eq. 17.

Proof. We know that the matrix Et is defined as

Et =
[
(1− ᾱt)

√
ᾱt−1

[
In + γ(t)ATA

]−1
]
.

First, we use the identity ∥cM∥2 = |c|∥M∥2, where c is any real number, we need to show

(1− ᾱt)
√
ᾱt−1

∥∥∥[[In + γ(t)ATA
]−1
]∥∥∥

2
< 1.

24

Note that (1 − ᾱt)
√
ᾱt−1 ≥ 0. Further, for γ(t) > 0,

[
In + γ(t)ATA

]
≻ 0, and therefore[

In + γ(t)ATA
]−1 ≻ 0.

We use the identity that for M ≻ 0, ∥M−1∥2 = 1
λmin(M) .

Therefore, ∥
[
In + γ(t)ATA

]−1 ∥2 = 1
λmin([In+γ(t)ATA])

. We use this expression to simplify the
inequality as

(1− ᾱt)
√
ᾱt−1

λmin([In + γ(t)ATA])
< 1.

We use to Weyl’s inequality (check Eq. 30) to lower bound the denominator and thereby upper bound
the left side. Therefore, it is sufficient to show

(1− ᾱt)
√
ᾱt−1

1 + γ(t)λmin(ATA)
< 1.

We observe that the numerator (1 − ᾱt)
√
ᾱt−1 is always less than 1. However, we know that the

denominator 1 + γ(t)λmin(A
TA) is strictly greater than 1 for γ(t) > 0 as (ATA)−1 exists and

λmin(A
TA) > 0. Therefore, the left side is always less than 1. This leads to∥∥∥(1− ᾱt)

√
ᾱt−1

[
In + γ(t)ATA

]−1
∥∥∥
2
< 1.

Lemma 9. Suppose Assumption 2 holds. Consider a T -step diffusion process with coefficients
ᾱ0, . . . , ᾱT such that ᾱ0 = 1, ᾱT = 0, ᾱt ∈ [0, 1], If ᾱt < ᾱt−1∀ t ∈ [1, T] with the penalty
coefficients from Algorithm 1 given by γ(t) > 0, ∥E1∥2, with Et defined as in Eq. 17, is upper
bounded by

σmax(E1) ≤
1− ᾱ1

1 + γ(1)λmin(ATA)
.

Proof. We know that Et is given by

Et =
√
ᾱt−1(1− ᾱt)

[
In + γ(t)ATA

]−1
.

We first substitute for t = 1 and
√
ᾱ0 = 1

E1 = (1− ᾱ1)[In + γ(1)ATA]−1.

We use the identity ∥cM∥2 = |c|∥M∥2, where c is any real number, to get

∥E1∥2 = (1− ᾱ1)
∥∥[In + γ(1)ATA]−1

∥∥
2
.

Here, note that (1− ᾱ1) ≥ 0. Similar to Lemma 8, we can rewrite the spectral norm as

∥E1∥2 =
1− ᾱ1

λmin([In + γ(1)ATA])
.

Again, using Weyl’s inequality and performing similar modifications as in Lemma 8, we obtain the
following upper bound for the spectral norm

∥E1∥2 ≤ 1− ᾱ1

1 + γ(1)λmin(ATA)
.

Lemma 10. Suppose Assumption 2 holds. Consider a T -step diffusion process with coefficients
ᾱ0, . . . , ᾱT such that ᾱ0 = 1, ᾱT = 0, ᾱt ∈ [0, 1]. If ᾱt < ᾱt−1 ∀t ∈ [0, T], ∥Ft∥2, with Ft as
defined in Eq. 18, is less than 1. Additionally, ∥F1∥2 is 0.

25

Proof. Note that Ft is given by the expression,

Ft =
√
1− ᾱt−1

√
1− ᾱt

√
ᾱtIn.

First, we use the identity ∥cM∥2 = |c|∥M∥2, where c is any real number. Therefore, we need to
show

∥Ft∥2 =
√
1− ᾱt−1

√
1− ᾱt

√
ᾱt ∥In∥2 < 1.

For the given conditions on ᾱ0, . . . , ᾱT , we observe that at least one of the terms in√
1− ᾱt−1

√
1− ᾱt

√
ᾱt is always less than 1. Therefore ∥Ft∥2 < 1. And, since ᾱ0 = 1, for

F1, we have
√
1− ᾱ0 = 0. Therefore, F1 is a null matrix and ∥F1∥2 = 0.

B METRICS

For the FTSD and J-FTSD metrics, we train the time series and condition encoders using the procedure
given in Narasimhan et al. (2024). For FTSD, we only train the time series encoder using supervised
contrastive loss to maximize the similarity of time series chunks that belong to the same sample. For
J-FTSD, we perform contrastive learning training in a CLIP-like manner to maximize the similarity
between time series and corresponding paired metadata, as explained in Narasimhan et al. (2024).
We use Informer models as the encoders. Additionally, just as in the case of (Paul et al., 2022;
Narasimhan et al., 2024), we observe that the approaches corresponding to the lowest values of FD
metrics have the lowest TSTR and DTW scores, and the highest SSIM scores. This further validates
the correctness of the FTSD and J-FTSD metrics used for evaluation.

We sourced the implementations of DTW and SSIM from the public domain. For SSIM, we used 1D
uniform filters from SciPY Virtanen et al. (2020). We set the values of C1 and C2 to 1−4 and 9−4.

For the constraint violation magnitude, we computed the violation for each constraint, excluding the
allowable constraint violation budget.

C DATASETS

We compared CPS against the existing baselines for six settings - air quality (Chen, 2019), air quality
conditional (Chen, 2019), traffic (Hogue, 2019), traffic conditional (Hogue, 2019), stocks Yoon et al.
(2019), and waveforms. The training and testing splits for the air quality and traffic datasets are taken
from Narasimhan et al. (2024). We additionally evaluated the constrained generation approaches on
the stocks and the waveforms datasets. We used the preprocessing scripts provided by Yoon et al.
(2019) for the stocks dataset. The waveforms dataset was synthetically generated. We generated
64, 000 sinusoidal waveforms of varying amplitudes, phases, and frequencies. The amplitude varies
from 0.1 to 1.0. The phase varies from 0 to 2π. The frequency limits were chosen based on the
Nyquist criterion. The generators and the GAN models were trained on this dataset. However, for the
TSTR metrics, we created a subset of this dataset with 16, 000 samples. All the datasets except the
waveforms dataset were standard normalized.

The Air Quality dataset is a multivariate dataset with six channels. The total number of train, val, and
test samples are 12166, 1537, and 1525, respectively.

The Traffic dataset is univariate. The total train, val, and test samples are 1604, 200, and 201,
respectively.

The Stocks dataset is a multivariate dataset with six channels. The total train, val, and test samples
are 2871, 358, and 360, respectively.

The truncated form of the waveforms dataset used for evaluation consists of 13320, 1665, and 1665
train, val, and test samples, respectively.

The horizon length used for all datasets is 96.

D IMPLEMENTATION

In this section, we will describe the implementation details of our approach, each baseline, trained
models, metrics, etc.

26

D.1 DIFFUSION MODEL ARCHITECTURE

We utilize the TIME WEAVER-CSDI denoiser for all the diffusion models used in this work. The
training hyperparameters and the model parameters are precisely the same as indicated in (Narasimhan
et al., 2024). The total number of residual layers is 10 for all the experiments. Further, we used 200
denoising steps with a linear noise schedule for the diffusion process. All the baselines and CPS use
the same base diffusion model with the TIME WEAVER-CSDI denoiser backbone.

We use 256 channels in each residual layer, with 16-dimensional vectors representing each time
series channel. The diffusion time step input embedding is a 256-dimensional vector. Further, the
metadata encoder has an embedding size of 256 for the conditional case. The metadata encoder has
two attention layers with eight attention heads. All our experiments use a learning rate of 10−4. Our
training procedure and the hyperparameters are precisely the same as the values in Narasimhan et al.
(2024).

D.2 CONSTRAINED POSTERIOR SAMPLING IMPLEMENTATION

For the CPS implementation, we use CVXPY Diamond & Boyd (2016). We first implement
the constraint violation function with the violation threshold set to 0.005 for all the constraints
except the bounds like argmax, argmin, OHLC, and the trend constraint. For example, con-
sider the mean constraint. The constraint violation function for this constraint is implemented
as max

(∣∣∣ 1L (∑L
u=1 c(u)

)
− µc

∣∣∣− 0.005, 0
)

, where L is the time series horizon. We do not provide
the constraint violation threshold for the bounds. Though the allowable constraint violation threshold
is 0.01, we performed the projection step with a constraint violation threshold of 0.005 to ensure
that the sample strictly lies within the constraint set. We use the same choice of γ(t) ∀t ∈ [1, T] as
described in Sec. 3. However, we clip the value of γ(t) to 100, 000 after certain denoising steps, as
the CVXPY solvers cannot handle extremely high values of γ(t). We note that this clipping usually
occurs after 150 denoising steps.

D.3 BASELINE IMPLEMENTATION

This section will explain all the details about the baseline implementations. Specifically, we use
two baselines - Constrained Optimization Problem (COP) and Guided DiffTime. We note that both
approaches were proposed in (Coletta et al., 2024). However, the implementation of these approaches
is not publicly available. Based on the details provided in (Coletta et al., 2024), we have implemented
the baselines for comparison against CPS.

D.3.1 CONSTRAINED OPTIMIZATION PROBLEM IMPLEMENTATION

The Constrained Optimization Problem, COP, has two variants. These are referred to as COP and
COP-FineTuning, respectively. In COP, we perturb a randomly selected sample from the training
and validation datasets. In COP-FineTuning, we perturb the sample generated from the TIME
WEAVER-CSDI diffusion model.

Note that (Coletta et al., 2024) suggests to extract statistical features to be imposed as distributional
constraints. For example, Coletta et al. (2024) suggests extracting autocorrelation features for the
stocks dataset. However, since it is practically impossible to list all the statistical features for each
dataset to obtain the distributional constraints, Coletta et al. (2024) suggests the use of the critic
function from a Wasserstein GAN (Arjovsky et al., 2017). The details of the GAN training are
summarized below.

COP has two objectives - maximize the l2 distance from a randomly selected sample from the training
and maximize the critic value from a Wasserstein GAN.

Similarly, COP FineTuning has two objectives - minimize the l2 distance from a generated sample
and maximize the critic value from a Wasserstein GAN.

We optimize for these objectives while ensuring constraint satisfaction.

As suggested in (Coletta et al., 2024), we use the SLSQP solver from SciPy Virtanen et al. (2020).
Unlike (Coletta et al., 2024), which performs piecewise optimization, we note that all the constraints

27

used in our work are global. Therefore, piecewise optimization is very suboptimal. For example, it is
suboptimal to break a time series into chunks and perform optimization for each piece when the goal
is to generate a sample with a specific mean value. This is also pointed out in (Coletta et al., 2024).
Therefore, we perform COP for the whole time series at once. We consider two budgets - 0.005 and
0.01. This is similar to Coletta et al. (2024). However, unlike their approach, we stop with 0.01 as the
allowable constraint violation in our case is 0.01 for all methods.

We used a weight of 0.1 for the critic’s objective. We noticed that for different values (1.0,0.1,0.01)
of this weight, there was very little change in the DTW and the SSIM metrics.

D.3.2 CRITIC FUNCTION IMPLEMENTATION

Coletta et al. (2024) suggest using the critic function in a Wasserstein GAN (Arjovsky et al., 2017)
to enforce realism in the COP approach. Therefore, we used the WaveGAN (Donahue et al., 2018)
implementation from (Alcaraz & Strodthoff, 2023). The implementation from (Alcaraz & Strodthoff,
2023) has the gradient penalty loss, an improved training procedure to enforce the required Lipschitz
continuity for the critic function. Additionally, the WaveGAN training with gradient penalty has
been implemented (Alcaraz & Strodthoff, 2023) for generating time series samples for the ECG
domain. Therefore, we use their implementation to obtain the critic function for the COP baseline.
The number of parameters is adjusted such that the diffusion model and the GAN model have a
comparable number of parameters.

Similar to the diffusion model, we used the same architecture and training hyperparameters for all
the datasets and experimental settings. Specifically, we trained the WaveGAN model with a learning
rate of 10−4 for all the datasets. The input to the generator is a 48-dimensional random vector.
Additionally, we ensured that the total number of parameters was equally distributed between the
generator and the discriminator to prevent either of the models from overpowering the other.

D.3.3 GUIDED DIFFTIME IMPLEMENTATION

We use the same TIME WEAVER-CSDI denoiser as in the case of CPS. For the guidance weight,
we experimented with the following weights - (0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0). We chose the
best guidance weight based on the constraint violation rate. Note that we used the same guidance
weight for all individual constraints. Using PyTorch, we implemented all the constraints mentioned in
Sec. 4. Additionally, we augmented the Guided DiffTime approach with the DiffTime algorithm for
fixed values. In other words, after each step of denoising followed by guidance update, we enforced
the fixed value constraints, as specified in (Coletta et al., 2024). This applies to the values at argmax,
argmin, 1, 24, 48, 72, and 96 timestamps.

28

	Introduction
	Preliminaries
	Background and Related Work

	Constrained Posterior Sampling
	Theoretical Justification

	Experiments
	Conclusion
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2

	Metrics
	Datasets
	Implementation
	Diffusion Model Architecture
	Constrained Posterior Sampling Implementation
	Baseline Implementation
	Constrained Optimization Problem Implementation
	Critic Function Implementation
	Guided DiffTime Implementation

