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ALERT: Adversarial Learning with Expert
Regularization using Tikhonov Operator for Missing

Band Reconstruction
Litu Rout†

Abstract—The earth observation using remote sensing is one
of the most important technologies to assimilate key attributes
about the earth’s surface. To achieve tangible consequence, the
internal building blocks of such a complex system must operate
flawlessly. However, due to dynamically changing environment,
degradation in sensor electronics, and extreme weather condition
remotely sensed images often miss essential information. As the
sensors operate over several years in space the likelihood of
sensor degradation persists. This results in commonly observed
issues, such as stripe noise, missing partial data, and missing
band. Various ground based solutions have been developed
to address these technological bottlenecks individually. In this
manuscript, we devise a method, which we call ALERT, to tackle
missing band reconstruction. The proposed method reconstructs
missing band with the sole supervision of spectral and spatial
priors. We compare the proposed framework with state-of-the-
art methods and show compelling improvement both qualitatively
and quantitatively. We provide both theoretical and empirical
evidence of better performance by regularized adversarial learn-
ing as compared to complete supervision. Further, we propose a
new Residual-Dense-Block (RDB) module to preserve geometric
fidelity and assist in efficient gradient flow. We show that ALERT
captures essential features such that the spatial and spectral
characteristics of reconstructed band remains preserved. To crit-
ically analyze the generalization we test the performance on two
different satellite datasets: Resourcesat-2A and WorldView-2. As
per our extensive experimentation, the proposed method achieves
20.72%, 13.81%, 1.05%, 15.91%, and 2.94% improvement in
RMSE, SAM, SSIM, PSNR, and SRE respectively over state-of-
the-art model.

Index Terms—Remote Sensing, Adversarial Learning, Missing
Band Reconstruction, Expert Regularization, Tikhonov Operator.

I. INTRODUCTION

REMOTE Sensing is a complex composition of various
subsystems which are intended to operate coherently

for tangible outcome. In the process of launching a satellite
to acquiring remotely sensed images, lot of things could
occur in an adverse manner. The dynamics of atmosphere and
degradation in the internal building blocks of these complex
subsystems are often mirrored by poor image quality. Some
of the commonly observed issues with such remote sensing
images are stripe noise, dead detectors, missing partial data,
haze, and missing band. These unavoidable issues on board
encourage researchers to devise a ground based solution so as
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Fig. 1. Samples of paired concurrent data. (a) FCC of SWIR (R), NIR (G),
and G (B). (b) Corresponding R band.

to improve the data usability. As per recent studies [1], [2],
[3], [4], [5], there is a serious dependency on the ground based
solutions to improve the usability of remotely sensed imagery.

In this manuscript, we focus on the missing band issue
that may arise due to several reasons including degradation
in sensor electronics of that particular band. Since Red (R)
band possess a vital contribution in various remote sensing
applications, we primarily focus on reconstructing this band
with the sole supervision of existing concurrent multi-spectral
bands: Short-Wave InfraRed (SWIR), Near InfraRed (NIR),
and Green (G). Nevertheless, the proposed approach can
also be extended to reconstruct other bands without loss of
generality. In Fig. 1, we show paired concurrent data used
for reconstructing missing band information. The developed
model is intended to operate on the False Colour Composite
(FCC) image, as shown in Fig. 1 and reconstruct the corre-
sponding Red band by preserving both the spatial and spectral
characteristics.

Over the years many data reconstruction techniques have
been proposed taking into account several key aspects of
remote sensing imagery. The notion of inserting additional
information into an image based on cues derived from spatial,
spectral, or temporal domain is a challenging problem in the
field of computer vision. The spatial domain methods rely on
the assumption that sufficient statistics about missing infor-
mation is captured in the undamaged regions. Though these
methods [6], [7], [8] address this issue to some extent, the re-
construction of large missing areas with required precision still
remains challenging. Also, the assumption of similar statistics
is not always satisfied in practical real world applications.
Therefore, to articulate missing data reconstruction, recent
studies [9], [10] propose to augment spectral information with
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Fig. 2. Pipeline of the proposed framework. The generator learns to generate samples of red band distribution given corresponding samples of the source
distribution. The expert regularization and discriminator assists the generator in the process of learning target distribution.

conditional spatial data along with temporal information which
effectively captures rich texture and features of missing targets.
But the registration artifacts and difficulty in getting strictly
chronological data over same region reduces the efficiency
of such methods [11]. Beyond that, a unified framework to
capture the essence of spatial, spectral, and temporal domain
is proved to be effective in addressing the issues of partial
data reconstruction [2]. However, this method is also limited
by the absence of well registered and strictly chronological
data. In addition, such methods extract substantial cues from
the available partial data in the same spatial domain, which
is not available in case of complete loss of a certain band.
This therefore increases the complexity of reconstructing a
missing band entirely from priors. Our contributions can be
summarized as following.

• One of the primary objectives of this study is to analyze
the efficacy of direct supervision and supervision with
augmented adversarial objective with respect to missing
band reconstruction of satellite imagery.

• In the process, we develop an end to end framework,
which we call ALERT and provide theoretical evidence
on why the proposed augmented objective is considerably
better than sole supervision.

• Further, we propose a new building block, namely Resid-
ual Dense Block (RDB) to enforce geometric fidelity
while allowing better gradient flow.

• Also, we study the generalization of proposed method to
a different satellite, WorldView-2 and isolated physical

location, Washington.
In the following section we briefly discuss about recent works
attempting to address similar problems as discussed in this
study.

II. RELATED WORK

Recently, a deep learning model: DeepSWIR proposed an
alternative to synthesize a high resolution SWIR band by
learning a dense fusion of features extracted through global
and local residual feature extraction units [5]. This method
exploits the spatial characteristics from existing high resolution
bands (G, R, NIR) at 5 m and spectral characteristics from
a coarse resolution SWIR band at 24 m to reconstruct the
high resolution SWIR at 5 m. However, this method has one
limitation as it relies on a coarser resolution version of the
missing band to learn spectral characteristics. Thus, we can not
directly apply this approach for missing band reconstruction.
We therefore modify the architecture of DeepSWIR to address
the missing band reconstruction of Advanced Wide Field
Sensor (AWiFS), which we call DeepAWiFS and use it as
our baseline for comparison. As per Fig. 1, the DeepAWiFS
model takes FCC, xi as input and learns to map it to the
corresponding red band, yi in a simulated environment using
purely supervised learning. The internal building blocks of
DeepAWiFS are exactly same as DeepSWIR other than the
paired training dataset. The pretrained DeepAWiFS is applied
on real missing band reconstruction problem. In a loose
sense, our proposed adversarial approach: ALERT is built
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upon the idea of reconstructing missing band entirely from
priors similar to DeepAWiFS. The generator part of ALERT
and DeepAWiFs share similar architectures apart from the
proposed residual dense block which will be discussed in the
subsequent sections.

Earlier, it was believed that reconstruction of a spectral band
from other spectral bands is not feasible with sufficient degree
of realism as the spectral bands have uncorrelated distributions.
However, recent advancements in computer vision have shown
promising results to counter this earlier belief. The ability
of deep neural networks to learn unique representations of
various target attributes drives the success of band reconstruc-
tion from uncorrelated spectral bands. Despite the fact that
supervised learning driven deep neural networks have achieved
remarkable success in many challenging vision problems, the
designing of a suitable objective function still remains ex-
tremely difficult. In remote sensing, the hand-crafted objective
functions, such as Root Mean Square Error (RMSE), Mean
Absolute Error (MAE) etc. introduce unacceptable artifacts
that pushes the reconstructed images away from realistic
manifold of actual data.

To address this issue, Goodfellow et. al. [12] introduced an
innovative learning framework, namely Generative Adversarial
Nets (GANs) which is inspired by game theory. Instead of
using any fixed hand-crafted objective function, it uses two
neural networks: generator and discriminator to play against
each other and converge to a minimally divergent solution.
Unlike in supervised learning, where a target network re-
ceives gradient from a fixed objective throughout training, in
adversarial learning the target network, namely generator re-
ceives gradient from a continually evolving objective, namely
discriminator. As the training progresses, the discriminator
becomes stronger and stronger which allows the generator to
receive better gradients and become superior to its previous
self. This, upon reaching at Nash equilibrium, enables the
generator to push the data generating distribution close to
the natural manifold of realistic data. The GANs provide two
fold advantages. First, it can learn distributions confined to a
low dimensional manifold, such as distribution of a missing
spectral band. Second, it can directly generate samples from
the intended target distribution, which is the missing band
under current study.

Based on this adversarial learning, A. Rangnekar et.al. train
conditional GANs to map coarser resolution RGB images
into coarser resolution hyper-spectral images [13]. The trained
model is then used to predict high resolution hyper-spectral
images given high resolution RGB images. Since the objective
here is to make the spectral resolution finer by resolving
existing overlapping wider bandwidth signals into finer ranges,
the task becomes relatively straightforward. In this case the
RGB images already contain essential broader spectral signa-
tures. However, the problem of missing band reconstruction
does not have such conditional information covering entire
wavelength spectrum, which makes it particularly different
from super-resolution. Also, this method uses Jensen-Shannon
Divergence (JSD) as primary objective function which has
empirical evidence of mode-collapse, a commonly observed
issue with such objectives. On the other hand, the proposed

ALERT method with Wasserstein objective is reported very of-
ten by independent researchers to have alleviated this adverse
effect. Further, the authors in [14], [15], [16] propose various
methods of extracting hyper-spectral bands from undersampled
acquisitions in the spectral domain. It is worth mentioning
that though both the problems are quite challenging in their
own way, the missing band reconstruction is particularly less
straightforward as it does not have access to as many cues as
super-resolution.

Motivated by these findings, we build upon this adversarial
framework and show that adversarial objectives can perform
better than hand-crafted supervised objectives even in remote
sensing imagery. Apart from that, we identify some key limi-
tations of adversarial learning and propose solutions to address
those issues with sufficient experimentation and theoretical
backup. It is to be noted that we devise a method to address
missing band reconstruction from distribution perspective us-
ing a guided adversarial framework, which we call ALERT
that only requires concurrent multi-spectral data. To put more
succinctly, the model receives gradients from an expert system
and an adversary which penalizes the generator configuration
that otherwise leads to divergence from real manifold. The
expert regularization, as proposed in this paper, serves as
an imitation learning objective and allows faster convergence
of adversarial learning. In addition, we propose architectural
innovations to improve quality, stability, and robustness of
ALERT in reconstructing missing band from deep priors. The
overall pipeline of ALERT is shown in Fig. 2.

The rest of the paper is organized as follows. In Section III,
we briefly discuss the prerequisites and elaborate on the
proposed methodology. In Section IV, we give details on the
study area and implementation setup. In Section V, we analyze
the results in both simulated and real experiments. Finally, we
summarize our discussion in Section VI.

III. METHODOLOGY

GANs framework is widely used in various computer vision
tasks. The high quality natural looking images generated
by adversarial learning gives this method an edge over its
counterparts. As per recent studies, though GANs are capable
of producing high quality images, it sometimes excessively
constructs fine granular structures which do not exist in
practice. This is due to the fact that discriminator recognizes
difficult-to-learn latent patterns that forces the generator to
make the images perceptually realistic. Thus, the images
generated by adversarial loss though achieve lesser PSNR than
pixel loss, such as RMSE and MAE these images have better
subjective image quality [17]. In remote sensing applications,
however, synthesis of such artificial features, though appear to
be realistic, is unacceptable as it reduces scientific fidelity. In
addition, to generate high fidelity realistic images as in [18], it
requires considerably large training time on high-end graphics
cards. We believe this requirement of large training time is
probably due to lack of supervision in GANs framework. To
our knowledge, the training process of GANs is still an active
area of research where stability, quality, and variation are of
prime importance.
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We, therefore, propose to address these issues by leveraging
the efficacy of adversarial learning while guiding the gradient
updates of generator via expert regularization. The generator
receives gradients from discriminator as well as from an expert
system which has access to the corresponding sample in the
target distribution. As the proposed expert regularization is
proportional to L2 distance between generated sample and
original sample, it does not affect the sample quality when
it lies within a confined manifold of realistic samples. In this
case, the adversarial loss helps the generator improve percep-
tual quality of generated samples. Note that the earlier gra-
dient updates receive significant contribution from the expert
system which triggers faster convergence. Further, the expert
regularization forces the generated sample to lie within a close
proximity of realistic satellite imagery unlike adversarial loss.
This impedes unwanted feature synthesis and improves the
scientific accuracy needed for remote sensing applications. In
this process, we also introduce a stable architecture specifically
designed to cooperate with adversarial learning and thereby,
improve the quality and variation of generated samples. In the
following section, we make this hypothesis more concrete by
providing mathematical backup.

A. Theoretical Framework

Let z1 ∼ PSWIR, z2 ∼ PNIR, z3 ∼ PG, and x ∼ PR,
where PSWIR, PNIR, PG, and PR represent the distribution
of SWIR, NIR, G, and R, respectively. Let z ∼ PS(z1, z2, z3),
where zi ∈ RM×N , i = 1, 2, 3, and PS represents joint
source distribution. Let x̂ ∼ PR̂, where x̂ = G(z) and PR̂
represents generator distribution. The corresponding sample
of z in the target distribution is denoted by y ∼ PR. The
problem of missing band reconstruction is formulated such
that the generator learns to sample from the distribution
of missing band, PR given the corresponding sample from
existing concurrent joint distribution, PS .

In conventional GANs framework, the minimax value func-
tion between G and D can be optimized by,

min
G

max
D

Ex∼PR
[log (D (x)))] + Ex̂∼PR̂

[log (1−D (x̂))] .

(1)
To address the issues of mode collapse, stability, and per-

formance in conventional GANs, Arjovsky et. al. introduced
Wasserstein GANs (WGANs) [19]. In case of missing band
reconstruction, the Earth Mover (EM) distance as minimized
by WGANs is given by,

min
G

max
D∈D

Ex∼PR
[D (x)]− Ex̂∼PR̂

[D (x̂)] , (2)

where D is the set of 1−Lipschitz functions of D. To enforce
1−Lipschitz on D, WGANs used weight clipping such that
the weights of D lies within a compact space.

The value function that the generator tries to optimize is
reported to be discontinuous with respect to its parameters.
This in fact is one of the major reasons for undesired behaviour
of virtually all generative models reported in classical adver-
sarial learning literature. On the contrary, the EM distance
based value function along with weight clipping, as described
in [19], assures continuity everywhere and differentiability

almost everywhere. However, as reported in [20], the WGANs
with weight clipping fail to capture higher order moments of
data generating distributions. Since, weight clipping enforces
the discriminator weights to move towards extremas of clip-
ping values, it is limited by a small set of critic functions
which may not be sufficient to capture difficult-to-learn latent
patterns. Gulrajani et. al. [20] proposed Gradient Penalty (GP)
term to address this issue and thereby, increase the set of
probable critic functions. Especially, the large ground cover
of satellite imagery with wide spectral band is difficult to be
represented using lower order moments. We therefore propose
to use WGANs+GP [20] so as to broaden the horizon of
missing band generating distribution. In the current setting,
WGANs+GP is given by,

min
G

max
D

Ex∼PR
[D (x)]− Ex̂∼PR̂

[D (x̂)]

− λ Ex̃∼PR̃

[
(‖∇x̃D (x̃)‖2 − 1)

2
]
,

(3)

where PR̃ represents a distribution that samples uniformly
along the line connecting points sampled from PR and PR̂.
Arjovsky et. al. discuss that enforcing gradient norm to be 1
along this line is a sufficient condition to maintain stability as
it is intractable to enforce gradient norm to be 1 everywhere
in the parametric space. In this setting, the generator does not
receive a feedback signal from an expert system having access
to corresponding sample in actual red band distribution (PR).
This results in slower convergence and allows feature synthesis
as a part of learning target distribution, which is unacceptable
in satellite image processing. Probably, the main reason for
not accepting these natural looking artificial images is that
the generator may synthesize some additional features, such
as building or vegetation, which do not exist on the physical
location, just to make the image fall on realistic manifold
of natural images. To address this issue, we propose to use
expert regularization based on Tikhonov operator which will
prevent this additional feature synthesis. This also guides the
gradient update step of generator in the desired direction which
will effectively increase the rate of convergence. To bring this
insight into fruition, we modify the WGANs+GP objective by
adding another constraint, which we call expert regularization.
The objective of discriminator remains unchanged as given by
equation (4).

min
D

Ex̂∼PR̂
[D (x̂)]− Ex∼PR

[D (x)]

+ λEx̃∼PR̃

[
(‖∇x̃D (x̃)‖2 − 1)

2
]
.

(4)

The new objective function of generator becomes,

min
G

Ex∼PR
[D (x)]− Ex̂∼PR̂

[D (x̂)]

+ Ey∼PR
[‖τ (x̂− y)‖2] ,

(5)

where τ = α I denotes Tikhonov operator. Here, α denotes
expert’s contribution and I represents identity matrix of ap-
propriate dimension. It is important to mention that we are
not the only one to discover the idea of expert regularization
in guiding gradient updates. LeCun et. al. [21] showed the
efficacy of expert regularization in model predictive policy
learning. Though it was experimented in a different problem
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setting, the notion of expert trajectory was indeed beneficial
to develop our theoretical framework.

B. Manifold Mapping Theorem

Definition: Let A be a subset of Rn. We say A has
measure zero in Rn if for every ε > 0, there is a covering
Q1, Q2, Q3, . . . of A by countably many rectangles such that

∞∑
i=1

v(Qi) < ε.

Here, v(Q) represents volume of rectangle Q.
Theorem I: if A be a collection of images sampled from source
(PS) and target (PR) distribution, then A has measure zero in
RM×N .
Proof: Let xi ∈ A, i = 1, 2, . . . and x̃j = V ec(xi), j =
1, 2, . . . ,MN , where V ec(.) denotes vectorization operator
of a matrix. For δ = α

i , where α > 0, we can choose
Qi = [x̃1 − δ, x̃1 + δ] × · · · × [x̃j − δ, x̃j + δ] × · · · ×
[x̃MN − δ, x̃MN + δ]. Now,

∞∑
i=1

v (Qi) =

∞∑
i=1

(
2α

i

)MN

= (2α)
MN

∞∑
i=1

(
1

iMN

)
According to the definition, we can finish the proof by finding
a suitable δ for every ε > 0. So,

∞∑
i=1

v (Qi) < ε

=⇒ (2α)
MN

∞∑
i=1

(
1

iMN

)
< ε

=⇒ (2α)
MN

< ε

(
∵
∞∑
i=1

(
1

iMN

)
> 1

)

=⇒ α <
ε

1
MN

2

Therefore, for every ε > 0, there exists a δ = ε
1

MN

2i , such that∑∞
i=1 v(Qi) < ε.

Corollary I: A subset of a set of measure zero has measure
zero.

Let M be a subspace of images sampled from PS and N
be a subspace of corresponding paired images sampled from
PR. By Corollary I,M and N have measure zero in RM×N .
Since the generator (G) with expert regularization carries each
element p ∈M toN in a one-to-one fashion, it is easy to show
that G forms a coordinate patch on MN -manifoldM about p.
Here, the discriminator is expected to distinguish between the
real manifold MR and manifold of generated samples MR̂.
However, if MR and MR̂ are inseparable, then discriminator
provides no assistance to generator. We discuss this with more
details in the following theorem.

C. Constant Discriminator Theorem

If two manifolds of real and generated bands match
perfectly in a metric space, then no discriminator can
separate them. Therefore, we can safely assume that any two
manifolds under our current study never align perfectly. This

gives rise to the weak assumption that the support of real:
supp PR and generated: supp PR̂ red band are contained in
separated compact subsets, which we call X and Y. Under the
aforementioned condition, there exists a perfect discriminator
D∗ that has accuracy 1 ∀ x ∈ X ∪ Y.
Proof: Given X ∩ Ȳ = Ø and X̄ ∩ Y = Ø, where X̄
denotes closure of X and Ø represents empty set. Let d
be the metric defined in RM×N and X,Y ⊂ RM×N . Let
d(X,Y) = ε. By ε-neighbourhood theorem X ⊂ RM×N
implies Nε/3(X) ⊂ RM×N . Analogously, Nε/3(Y) ⊂ RM×N .

ε-neighbourhood Theorem: Let X be a compact subspace of
RM×N ; U be an open subset of RM×N containing X. Then
there exists an ε > 0 such that the ε-neighbourhood of X,
Nε(X) (in both euclidean and sup metric) is contained in U ,
i.e., Nε(X) ⊂ U .

There is strong empirical and theoretical evidence to
believe that D∗(x) = 1 ∀x ∈ Nε/3(X) (real) and
D∗(y) = −1 ∀y ∈ Nε/3(Y) (fake) for sufficiently trained
D∗(.) [19]. Therefore ∇xD∗(x) = lim

δx→0

D∗(x+δx)−D∗(x)
δx = 0

by choosing δx < ε/3. Similarly, ∇yD∗(y) = 0 by choosing
δy < ε/3. This shows that there exist open balls B(X, ε/3)
and B(Y, ε/3) where D∗(.) remains constant. Thus, we finish
the proof of constant discriminator theorem.

Since discriminator remains constant in both manifolds the
generator does not learn anything useful by backpropagating
through it. This results in slow convergence and poor practical
performance. To put more succinctly, randomly initialized
parameters of generator may not necessarily generate samples
that fall within the support of real distribution. However,
the proposed expert regularization will update the generator’s
parameters in such a way that the two supports are connected
in RM×N , i.e., X∩ Ȳ 6= Ø and X̄∩Y 6= Ø. This ensures that
the generator receives useful gradients from the discriminator.

D. Supervised and Adversarial Objective

Supervised learning based on fixed objective function, such
as RMSE performs reasonably well in many computer vision
applications. However, this RMSE metric faces a common
issue as suggested by statistical theory. As per this theory, for a
given z ∈ PS there exist many x̂i ∈ X, i = 1, 2, 3, . . . , N . The
predicted sample, x̂ therefore is obtained by implicit optimiza-
tion, argx̂ min

∑N
i=1 ‖x̂i − y‖. Thus, the predicted R band will

be expected value of all possible R bands corresponding to
given input bands: G, NIR, SWIR. This is mirrored by poor
perceptual quality though PSNR remains quite high. On the
contrary, the supervised generator with discriminator as an
adversary selects one high quality sample from the pool of
possible targets [17].

Further, since G(.) is a hierarchical composition of con-
tinuous constituent functions mapping from Z → Y, it is
continuous in Z → Y. Therefore, z ∈ Nδ(zo) implies
dY (Gθ(z), yo) < ε for δ > 0 and ε > 0. Here, zo and yo
are the paired source and target bands, respectively. Hence,
∇θdY (Gθ(z), yo) < ε̂ for arbitrarily small ε̂. This exacerbates
the learning progress. On the contrary, the adversarial objective
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under this circumstance provides useful gradients that help
improve the image quality further by pushing it towards
natural manifold of realistic data. The major contribution
for non-negligible gradients in adversarial objective comes
from ∇θG

[
Ex∼PR

[D (x)]− Ex̂∼PR̂
[D (x̂)]

]
, which will only

be zero under constant discrimination, or upon convergence.
This proves that the augmentation of adversarial learning into
a supervised framework improves the perceptual quality of
generated images and attain relatively minimal empirical risk.
Within a tiny landscape of optimal empirical risk, the non-
diminishing gradient in ALERT also provides an explanation
for faster convergence compared to purely supervised frame-
work.

In [19], the authors claim that one of the most compelling
benefits of WGANs is that it does not require a careful design
of the network architecture. The authors claim is proven to be
effective in many computer vision tasks, however, we observe
that it does require a thoughtful design especially for satellite
image processing. We discuss these architectural details in the
following section.

E. Architecture

Recent advancement in deep neural networks, such as
Densenet [22] and ResNet [23] are very much success-
ful in Imagenet Large Scale Visual Recognition Challenge
(ILSVRC) [24]. It seems natural to wonder whether these
architectural innovations would be beneficial when incorpo-
rated in an adversarial framework. For this reason, we design
a new architecture by borrowing key ingredients from [22]
and [23]. We carefully combine the dense connection of
DenseNet and skip connection of ResNet to develop a new
Residual Dense Block (RDB) that enables faster convergence
and better stability due to efficient gradient flow. We develop
a custom Residual Block (RB) that performs reasonably well
on satellite image processing. Though batch normalization
reduces the covariate shift and improves performance on a
wide variety of computer vision tasks, it is proven to achieve
sub-optimal results for image reconstruction, such as super
resolution [25]. We observed similar degradation in perfor-
mance while reconstructing missing band from deep priors and
hence, we advocate not to use batch normalization in satellite
image reconstruction. The generator network consists of 2
convolutional blocks to extract shallow features. The shallow
features are then passed through 3 RDBs and finally concate-
nated with global features extracted by a single convolution
layer of kernel size (1x1). This helps the generator preserve
spatial characteristics of source distribution while pushing the
generated samples towards the realistic manifold of R band.
The discriminator is equipped with similar configuration as
that of the generator so as to untangle the generated samples
properly. In addition to that it has a Multi-Layer Perceptron
(MLP) with 3 linear layers to map the discriminated features
into required format. The overall configuration and intrinsic
architectural details are illustrated in Fig. 2.

TABLE I
TRAINING AND INFERENCE

Metrics Parameters Training
epochs

Training
RMSE

Inference
Time

AeroGAN 2 M 100 41.57 64 s
DeepAWiFS 4.7 M 1000 18.2 495 s
DSen2 4.7 M 1000 21.2 456 s
ALERT 2.8 M 50 10.3 70 s
% gain 40.42 95.00 51.41 84.64

TABLE II
QUANTITATIVE ANALYSIS

Metrics RMSE SAM (deg) SSIM PSNR (dB) SRE (dB)
AeroGAN 42.77 8.91 0.74 38.08 52.90
DeepAWiFS 27.76 6.63 0.86 31.60 56.6
DSen2 20.01 5.72 0.95 35.01 59.84
ALERT 15.85 4.93 0.96 36.63 61.60
% gain 20.72 13.81 1.05 4.63 2.94

IV. EXPERIMENT

A. Dataset and Study Area
We use multi-spectral satellite imagery of AWiFS on board

Resourcesat-2A payload of Indian Space Research Organisa-
tion (ISRO). AWiFS operates in VNIR and SWIR at 56 m
spatial resolution with a large swath of 730 km. In this paper,
we focus on two study areas in India. As per Worldwide
Reference System (WRS), we use path & row combinations
of 99 & 53 for training and 99 & 55 for testing purpose.
We process large satellite imagery by using small crops of
size (M = 64, N = 64) each. Thus, we create a total of
21375 paired concurrent samples randomly split into training
(18168 samples) and validation (3207 samples). We test the
performance of the proposed model on physically isolated
21250 test samples. In order to reconstruct the actual full
resolution image, we predict adjacent patches with a fixed
stride of (16,16) and employ Gaussian feathering for image
stitching [5].

B. Implementation Details
Here, we provide the necessary implementation details

along with exact hyper-parameter settings for faithfully re-
producing and evaluating the reported results. We use a local
machine with 8 GB gpu memory (Quadro P4000), 256 GB
ram, and i7 processor for conducting all experimentation.
We use Adam optimizer with fixed learning rate of 0.0001.
We pretrain generator with expert regularization alone for 2
iterations before updating discriminator 5 times and generator
once, as given by equation (4) and equation (5), respectively.
Note that the pretraining of generator, updates of discriminator,
and generator take place sequentially in every epoch. We set
λ = 10 and α = 100. We use fixed convolution kernels of size
(3x3) throughout except for global feature extraction where we
use (1x1) kernels. The entire framework has been developed
using Pytorch.

V. RESULTS AND DISCUSSION

In this study, we evaluate the model’s performance both
qualitatively and quantitatively. We analyze the training and
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Ground Truth

(PSNR/SSIM)

Original FCC

(NIR (R), R (G), G (B))

Corresponding Red Band

(PSNR/SSIM) (28.08/0.74) (31.60/0.86)

DeepAWiFS

(31.60/0.86)

DSen2

(35.01/0.95)

AeroGAN

(28.08/0.74)

(35.01/0.95) (36.63/0.96)

ALERT (Proposed)

(36.63/0.96)

Fig. 3. Qualitative analysis of reconstructed band in simulation. ALERT performs favourably against supervised learning. The region within bounding box
is enlarged for the sole purpose of better visualization.

(a) (b)

Fig. 4. (a) First and (b) Second order moment difference between original
and reconstructed band.

Fig. 5. Per-pixel DN count cross correlation of ALERT. The DN values of
reconstructed band closely matches the original.

inference of state-of-the-art methods and proposed ALERT. As
training can be performed beforehand, we focus particularly on
inference time. As given in Table I, top performing method
DSen2 [26] with complete supervision achieves sub-optimal

Fig. 6. First and Second order moments. The reconstructed band shows
spectral consistency with existing bands.

results compared to adversarial learning based ALERT. It is
worth noticing that ALERT offers significant gain in train-
able parameters (40.42%), training epochs (95.00%), RMSE
(51.41%), and more importantly1 inference time (84.64%).
The percentage gain is computed relative to the best perform-
ing model DSen2 in every category.

Further, we use state-of-the-art image reconstruction assess-
ment metrics to critically analyze the performance quantita-
tively. As given in Table II, ALERT achieves considerable
improvement over its counterparts. Of particular interest, it
achieves 20.72%, 13.81%, 1.05%, 15.91%, and 2.94% im-
provement in RMSE, SAM, SSIM, PSNR, and SRE respec-
tively over state-of-the-art model, DSen2. It is worth men-
tioning that the adversarial learning with JSD as proposed
in AeroGAN [13] fails to capture higher order moments and
thereby, produces sub-optimal results. However, the adversar-
ial learning with Wasserstein distance and expert regularization
produces considerably better results. To qualitatively assess the
performance, we compare ground truth with these approaches
in Fig. 3 in a simulated environment where we have access
to corresponding red band. The supervised learning based

1important for near real time generation of bundled data product
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   Reconstructed FCC

(SWIR (R), NIR (G), R (B)) Missing Red Band Reconstructed Red Band Reconstructed FCC 

Fig. 7. Qualitative analysis of reconstructed band in real. ALERT reconstructs photo-realistic missing red band. The reconstructed band is auto-registered
and coherent with the existing bands: SWIR and NIR.

reconstructed image has relatively inferior image quality as
compared to adversarial learning which is consistent with
our aforementioned claim of realistic manifold. In addition,
we compare various models in terms of difference between
original and reconstructed statistical properties in Fig. 4.
Among the compared models, the proposed approach captures
both mean and variance statistics reasonably well.

Justifying the efficiency of ALERT, we extend our analysis
towards DN values. We cross correlate the reconstructed Red
band with the original band pixel-wise. We observe that the
reconstructed DN values closely follow the original DN values,
as shown in Fig. 5. Further, we analyze the consistency of
reconstructed band with existing bands in terms of mean
spectral characteristics in Fig. 6. We use all the 21250 test
samples to calculate the first and second order moments of
reconstructed and original bands while comparing the mean
spectral characteristics. The reconstructed DN values follow
near identical spectral signature as that of the original band.

Intent on checking generalization, we employ ALERT in a
real environment where we do not have access to correspond-
ing red band. As a matter of fact, we report that it generalizes
well to real environment and successfully reconstructs missing
band entirely from deep priors, as shown in Fig. 7. Also, the
reconstruction process does not inherently inject any sort of
geometric distortion and resolution degradation as a part of
multiple convolutions. We report that the proposed architecture
contributes significantly to achieve this feat.

Here, we provide more experimental results on adversarial
band reconstruction aiming at various spectral signatures. As
shown in Fig. 8A, ALERT successfully generates missing red
band in real environment where the synthetic band is consistent
with existing bands in terms of spectral and spatial resolution.
In Fig. 8A (a), (b), and (c), we observe that ALERT captures
the essence of several individual targets including barren land,
vegetation, lake water, and river water. Further, we analyse the
reconstructed band in NIR, R, and G false colour composites
in Fig. 8B. We report that the reconstructed band is coherent
across multiple spectral bands of real sensors. In Fig. 8B
(a), (b), and (c), we illustrate some of the aforementioned
key signatures in different colour composites to analyse the
spectral consistency and visual perceptual quality. We report

that the reconstructed missing band based on spectral priors, as
generated by ALERT, consists of essential spatial and spectral
components that make it visually indistinguishable from real
band.

A. Spectral Signature Analysis

To this end, we observed the efficacy of ALERT in recon-
structing photo-realistic missing band. However, it would be
interesting to study whether the reconstructed band follows
desired spectral patterns. In Fig. 9, we show the mean of
spectral minimum and maximum of 21250 test samples. We
observe that the DN values of reconstructed red band follows
the exact trend as that of the actual red band. Though the mean
of spectral maximum of reconstructed DN values incurs a
slight offset in Fig. 9 (b), it is reasonably minimal as compared
to the dynamic range. Despite that it preserves similar pattern
as that of the actual red band.

Further, we analyse the spectral signature of particular tar-
gets, such as cloud and snow to make the spectral consistency
more concrete. In this experiment, we randomly select a small
patch of pixels from a particular target of actual red band and
correlate its mean with the corresponding mean of synthesized
red band. As shown in Fig. 10 (a) and (b), we observe that the
DN values of reconstructed band closely follows that of the
original band in the simulated environment, suggesting high
confidence on spectral similarity.

B. Results on WorldView-2

Here, we discuss the efficacy of ALERT on very high
resolution multi-spectral imagery. To realize this, we have used
12208 multi-spectral images of WorldView-2 in testing. These
images are acquired over Washington DC with 1.6 m product
level GSD. Since WorldView-2 does not provide SWIR band,
we retrained the model with B, G, and NIR(1) as source
distribution and R as the target distribution. We used the same
learning algorithm in both the mid (56 m) and high resolution
(1.6 m) datasets to study its generalization. As shown in
Fig. 11, the reconstructed band has 63.25 dB PSNR and 0.9986
SSIM which is a favourable indicator of image perceptual
quality. Note that the training data consists of images which
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(A) (B)

Fig. 8. Qualitative analysis of reconstructed band in real environment. ALERT reconstructs photo-realistic missing red band. The reconstructed R band is
auto-registered and coherent with the existing bands: G, NIR and SWIR.
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Fig. 9. Spectral minimum and maximum analysis. The synthesized missing
red band closely follows the original band.

are acquired only over Indian territory and the test data is
from a completely different physical location. However, the
underlying features of test images loosely follow Independent
and Identically Distributed (I.I.D.) statistics which is mainly
the reason for such favourable outcome.

VI. CONCLUDING REMARK

In this manuscript, we studied the efficacy of supervised
and adversarial learning to address the complex task of
missing band reconstruction with the sole supervision of
existing spectral and spatial prior distribution. We analysed
the difficulty in reconstructing a missing band in comparison
with missing partial information. Thereafter, we proposed
an adversarial learning with expert regularization framework
for addressing this issue with sufficient degree of realism
necessary to meet scientific fidelity. We showed compelling
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Fig. 10. Spectral characteristics analysis of cloud and snow targets. The
reconstructed red band has almost identical DN values when compared with
original red band.

benefits of using proposed ALERT framework in remote sens-
ing applications as compared to supervised learning. Further,
we conducted extensive experimentation both qualitatively
and quantitatively using state-of-the-art evaluation metrics to
support our aforementioned claims. Also, we proposed an
architectural innovation, namely RDB to assist adversarial
learning especially in satellite image processing. Based on
our extensive experimentation, we showed considerable gain
in image quality, training, and inference as compared to
completely supervised learning. Though we have demonstrated
the adversarial learning with expert regularization for missing
band reconstruction, we believe it can be further extended to
other complex computer vision tasks without having to loose
any performance benefits.
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Fig. 11. Qualitative analysis of reconstructed band on WorldView-2. ALERT reconstructs very high resolution missing red band with spectral and spatial
consistency.
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