Why Adversarial Interaction Creates Non-Homogeneous Patterns: A Pseudo-Reaction-Diffusion Model for Turing Instability

Litu Rout

Space Applications Centre Indian Space Research Organisation

Ir@sac.isro.gov.in

January 6, 2021

Litu Rout (ISRO)

Pseudo-Reaction-Diffusion Model

January 6, 2021 1 / 41

Overview

Litu Rout (ISRO)

æ

(日) (四) (日) (日) (日)

Supervised Learning vs Regularized Adversarial Learning

Litu Rout (ISRO)

Pseudo-Reaction-Diffusion Model

January 6, 2021 3/41

• Symmetry and homogeneity

A D N A B N A B N A B N

- Symmetry and homogeneity
- Breakdown of symmetry and homogeneity

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Symmetry and homogeneity
- Breakdown of symmetry and homogeneity
- Root cause: Turing instability

A (10) N (10) N (10)

- Symmetry and homogeneity
- Breakdown of symmetry and homogeneity
- Root cause: Turing instability

Hypothesis

A system in which a generator and a discriminator adversarially interact with each other exhibits Turing-like patterns in the hidden layer and top layer of a two layer generator network with ReLU activation.

Objectives

• Does it converge? If so, under what circumstance?

A D N A B N A B N A B N

Objectives

- Does it converge? If so, under what circumstance?
- Why do non-homogeneous patterns emerge?

э

(日) (四) (日) (日) (日)

Objectives

- Does it converge? If so, under what circumstance?
- Why do non-homogeneous patterns emerge?
- Why is it important to study such patterns?

▲ □ ▶ ▲ □ ▶ ▲ □

Problem Setup

Consider *n* i.i.d. training samples: $\{(\mathbf{x}_{p}, \mathbf{y}_{p})\}_{p=1}^{n} \subset \mathbb{R}^{d_{in}} \times \mathbb{R}^{d_{out}}$.

Two layer network with ReLU activation ($\sigma(.)$):

$$f(\boldsymbol{U},\boldsymbol{V},\boldsymbol{x}) = \frac{1}{\sqrt{d_{out}m}} \boldsymbol{V}\sigma(\boldsymbol{U}\boldsymbol{x}).$$
(1)

Here, $\boldsymbol{U} \in \mathbb{R}^{m \times d_{in}}$ and $\boldsymbol{V} \in \mathbb{R}^{d_{out} \times m}$.

Let input data points be represented by $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n) \in \mathbb{R}^{d_{in} \times n}$ and corresponding labels by $\mathbf{Y} = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n) \in \mathbb{R}^{d_{out} \times n}$.

イロト イポト イヨト イヨト 二日

Problem Setup

Supervised learning:

$$\mathcal{L}_{sup}\left(\boldsymbol{U},\boldsymbol{V}\right) = \frac{1}{2} \sum_{p=1}^{n} \left\| \frac{1}{\sqrt{d_{out}m}} \boldsymbol{V}\sigma\left(\boldsymbol{U}\boldsymbol{x}_{p}\right) - \boldsymbol{y}_{p} \right\|_{2}^{2}$$
$$= \frac{1}{2} \left\| \frac{1}{\sqrt{d_{out}m}} \boldsymbol{V}\sigma\left(\boldsymbol{U}\boldsymbol{X}\right) - \boldsymbol{Y} \right\|_{F}^{2}.$$

(2)

Regularized adversarial learning:

$$\mathcal{L}_{aug}\left(\boldsymbol{U},\boldsymbol{V},\boldsymbol{W},\boldsymbol{a}\right) = \underbrace{\frac{1}{2} \left\| \frac{1}{\sqrt{d_{out}m}} \boldsymbol{V}\sigma\left(\boldsymbol{U}\boldsymbol{X}\right) - \boldsymbol{Y} \right\|_{F}^{2}}_{\mathcal{L}_{sup}} - \underbrace{\frac{1}{m\sqrt{d_{out}}} \sum_{p=1}^{n} \boldsymbol{a}^{T}\sigma\left(\boldsymbol{W}\boldsymbol{V}\sigma\left(\boldsymbol{U}\boldsymbol{x}_{p}\right)\right)}_{\mathcal{L}_{adv, D}}$$
(3)
(3)

Learning Algorithm

Randomly initialized gradient descent:

$$\frac{du_{jk}}{dt} = -\frac{\partial \mathcal{L}_{aug} \left(\boldsymbol{U}(t), \boldsymbol{V}(t), \boldsymbol{W}(t), \boldsymbol{a}(t) \right)}{\partial u_{jk}(t)},$$
$$\frac{dv_{ij}}{dt} = -\frac{\partial \mathcal{L}_{aug} \left(\boldsymbol{U}(t), \boldsymbol{V}(t), \boldsymbol{W}(t), \boldsymbol{a}(t) \right)}{\partial v_{ij}(t)}$$

for $i \in [d_{out}]$, $j \in [m]$ and $k \in [d_{in}]$.

Equilibrium (ideal condition): $\frac{du_{jk}}{dt} = \frac{dv_{ij}}{dt} = 0.$ ϵ -approximate equilibrium: $\left|\frac{du_{jk}}{dt}\right| < \epsilon$ and $\left|\frac{dv_{ij}}{dt}\right| < \epsilon$ for a small ϵ .

イロト 不得 トイヨト イヨト 二日

(4)

Revisiting Turing's Reaction-Diffusion Model

Governing **Reaction** (\mathfrak{R}) and **Diffusion** (\mathfrak{D}) dynamics:

$$\frac{d\mathbf{u}_{j}}{dt} = \mathfrak{R}_{j}^{\mathbf{u}}(\mathbf{u}_{j},\mathbf{v}_{j}) + \mathfrak{D}_{j}^{\mathbf{u}}(\nabla^{2}\mathbf{u}_{j}),
\frac{d\mathbf{v}_{j}}{dt} = \mathfrak{R}_{j}^{\mathbf{v}}(\mathbf{u}_{j},\mathbf{v}_{j}) + \mathfrak{D}_{j}^{\mathbf{v}}(\nabla^{2}\mathbf{v}_{j}).$$
(5)

• Turing, A. 1952. The Chemical Basis of Morphogenesis. Phil. Trans. of the Royal Society of London. Series B, Biological Sciences 237(641): 37–72.

イロト イボト イヨト イヨト

Simplified Setup: Scalar Network and Training One Layer

Simplified Generator network:

$$f(\boldsymbol{U},\boldsymbol{v},\boldsymbol{x}) = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} v_j \sigma\left(\boldsymbol{u}_j^T \boldsymbol{x}\right) = \frac{1}{\sqrt{m}} \boldsymbol{v}^T \sigma\left(\boldsymbol{U} \boldsymbol{x}\right).$$
(6)

Supervised learning:

$$\mathcal{L}_{sup}\left(\boldsymbol{U},\boldsymbol{v}\right) = \sum_{p=1}^{n} \frac{1}{2} \left(f\left(\boldsymbol{U},\boldsymbol{v},\boldsymbol{x}_{p}\right) - y_{p} \right)^{2}$$
(7)

Regularized adversarial learning: $\mathcal{L}_{aug}\left(\boldsymbol{U}, \boldsymbol{v}, \boldsymbol{w}, \boldsymbol{a} \right)$

$$=\sum_{p=1}^{n}\frac{1}{2}\left(f\left(\boldsymbol{U},\boldsymbol{v},\boldsymbol{x}_{p}\right)-\boldsymbol{y}_{p}\right)^{2}-\frac{1}{\sqrt{m}}\sum_{p=1}^{n}\boldsymbol{a}^{T} \sigma\left(\boldsymbol{w}\left(f\left(\boldsymbol{U},\boldsymbol{v},\boldsymbol{x}_{p}\right)\right)\right)$$
(8)

Litu Rout (ISRO)

January 6, 2021 10 / 41

Definition 1. (Du et al., 2018) Define Gram matrix $\mathcal{H}^{\infty} \in \mathcal{R}^{n \times n}$. Each entry of \mathcal{H}^{∞} is computed by $\mathcal{H}_{ij}^{\infty} = \mathbb{E}_{u \sim \mathcal{N}(0,l)} \left[x_i^T x_j \mathbf{1}_{\left\{ u^T x_i \geq 0, u^T x_j \geq 0 \right\}} \right]$.

Assumption 1. (Du et al., 2018) We assume $\lambda_0 \triangleq \lambda_{min}(\mathcal{H}^{\infty}) > 0$ which means that \mathcal{H}^{∞} is a positive definite matrix.

Lemma 1. If we i.i.d initialize $u_{jk} \sim \mathcal{N}(0,1)$ for $j \in [m]$ and $k \in [d_{in}]$, then with probability at least $(1 - \delta)$, u_{jk} induces a symmetric and homogeneously distributed matrix U at initialization within a ball of radius $\zeta \triangleq \frac{2\sqrt{md_{in}}}{\sqrt{2\pi\delta}}$.

Remark 1. Suppose $\|\mathbf{u}_j - \mathbf{u}_j(0)\|_2 \leq \frac{c\delta\lambda_0}{n^2} \triangleq R$ for some small positive constant *c*. In the current setup, the Gram matrix $\mathcal{H} \in \mathbb{R}^{n \times n}$ defined by

$$\mathcal{H}_{ij} = \mathbf{x}_i^T \mathbf{x}_j \frac{1}{m} \sum_{r=1}^m \mathbb{1}_{\left\{\mathbf{u}_r^T \mathbf{x}_i \ge 0, \mathbf{u}_r^T \mathbf{x}_j \ge 0\right\}}$$
satisfies $\|\mathcal{H} - \mathcal{H}(0)\|_2 \le \frac{\lambda_0}{4}$ and $\lambda_{min}(\mathcal{H}) \ge \frac{\lambda_0}{2}$.

Remark 2. With Gram matrix $\mathcal{H}(t)$, the prediction dynamics, $z(t) = f(\mathbf{U}(t), \mathbf{v}(t), \mathbf{x})$ are governed by the following ODE: $\frac{d\mathbf{z}(t)}{dt} = \mathcal{H}(t)(\mathbf{y} - \mathbf{z}(t)).$

Remark 3. For $\lambda_{min}(\mathcal{H}(t)) \geq \frac{\lambda_0}{2}$, we have

$$\|\boldsymbol{z}(t) - \boldsymbol{y}\|_2 \leq \exp\left(-\frac{\lambda_0}{2}t\right) \|\boldsymbol{z}(0) - \boldsymbol{y}\|_2.$$

Litu Rout (ISRO)

Pseudo-Reaction-Diffusion Model

Theorem (Symmetry and Homogeneity)

Suppose Assumption 1 holds. Let us i.i.d. initialize $u_j \sim \mathcal{N}(0, I)$ and sample v_j uniformly from $\{+1, -1\}$ for all $j \in [m]$. If we choose $||x_p||_2 = 1$ for $p \in [n]$, then we obtain the following with probability at least $1 - \delta$:

$$egin{aligned} & \left\| oldsymbol{u}_{j}(t) - oldsymbol{u}_{j}(0)
ight\|_{2} \leq \mathcal{O}\left(rac{n^{3/2}}{\sqrt{m}\lambda_{0}\delta}
ight), \ & \left\| oldsymbol{U}(t) - oldsymbol{U}(0)
ight\|_{F} \leq \mathcal{O}\left(rac{n^{3/2}}{\lambda_{0}\delta}
ight). \end{aligned}$$

Pseudo-Reaction-Diffusion Model

- Symmetry and homogeneity
- Breakdown of symmetry and homogeneity
- Root cause: Turing instability

A (10) < A (10) < A (10) </p>

Theorem (Breakdown of Symmetry and Homogeneity)

Suppose Assumption 1 holds. Let us i.i.d. initialize $u_j, w_r \sim \mathcal{N}(0, I)$ and sample v_j, a_r uniformly from $\{+1, -1\}$ for $j, r \in [m]$. Let $||x_p||_2 = 1$ for all $p \in [n]$. If we choose $||w||_2 \leq L \leq \mathcal{O}\left(\frac{\epsilon\sqrt{m}}{\kappa n\sqrt{2\log(2/\delta)}}\right)$, $\kappa = \mathcal{O}(\kappa^{\infty})$ where κ^{∞} denotes the condition number of \mathcal{H}^{∞} , and define $\mu \triangleq \frac{Ln\sqrt{2\log(2/\delta)}}{\sqrt{m}}$, then with probability at least $1 - \delta$, we obtain the following:

$$\begin{split} \|\boldsymbol{u}_{j}(t) - \boldsymbol{u}_{j}(0)\|_{2} &\leq \mathcal{O}\left(\frac{n^{3/2}}{\sqrt{m}\lambda_{0}\delta} + \left(\frac{\mu\left(1 + \kappa\sqrt{n}\right)}{\sqrt{m}}\right)t\right), \\ \|\boldsymbol{U}(t) - \boldsymbol{U}(0)\|_{F} &\leq \mathcal{O}\left(\frac{n^{3/2}}{\lambda_{0}\delta} + \mu\left(1 + \kappa\sqrt{n}\right)t\right). \end{split}$$

Reaction With Diffusion: Proof Sketch

Gradient Flow:

$$\left\|\frac{d\boldsymbol{u}_{j}(s)}{ds}\right\|_{2} = \left\|\frac{\partial \mathcal{L}_{aug}\left(\boldsymbol{U},\boldsymbol{v},\boldsymbol{w},\boldsymbol{a}\right)}{\partial \boldsymbol{u}_{j}(s)}\right\|_{2}$$

$$= \left\|\frac{\partial \mathcal{L}_{sup}\left(\boldsymbol{U},\boldsymbol{v}\right)}{\partial \boldsymbol{u}_{j}(s)} - \frac{\partial}{\partial \boldsymbol{u}_{j}(s)}\sum_{p=1}^{n}g\left(\boldsymbol{w},\boldsymbol{a},\boldsymbol{z}_{p}\right)\right\|_{2} \qquad (9)$$

$$\leq \underbrace{\left\|\frac{\partial \mathcal{L}_{sup}\left(\boldsymbol{U},\boldsymbol{v}\right)}{\partial \boldsymbol{u}_{j}(s)}\right\|_{2}}_{\text{Triangle inequality}} + \left\|\frac{\partial}{\partial \boldsymbol{u}_{j}(s)}\sum_{p=1}^{n}g\left(\boldsymbol{w},\boldsymbol{a},\boldsymbol{z}_{p}\right)\right\|_{2}.$$

э

Gradient Flow:

$$\left\|\frac{d\boldsymbol{u}_{j}(s)}{ds}\right\|_{2} = \left\|\frac{\partial\mathcal{L}_{aug}\left(\boldsymbol{U},\boldsymbol{v},\boldsymbol{w},\boldsymbol{a}\right)}{\partial\boldsymbol{u}_{j}(s)}\right\|_{2}$$

$$= \left\|\frac{\partial\mathcal{L}_{sup}\left(\boldsymbol{U},\boldsymbol{v}\right)}{\partial\boldsymbol{u}_{j}(s)} - \frac{\partial}{\partial\boldsymbol{u}_{j}(s)}\sum_{p=1}^{n}g\left(\boldsymbol{w},\boldsymbol{a},\boldsymbol{z}_{p}\right)\right\|_{2} \qquad (10)$$

$$\leq \left\|\frac{\partial\mathcal{L}_{sup}\left(\boldsymbol{U},\boldsymbol{v}\right)}{\partial\boldsymbol{u}_{j}(s)}\right\|_{2} + \left\|\frac{\partial}{\partial\boldsymbol{u}_{j}(s)}\sum_{p=1}^{n}g\left(\boldsymbol{w},\boldsymbol{a},\boldsymbol{z}_{p}\right)\right\|_{2} \qquad (10)$$
Triangle inequality

3

A D N A B N A B N A B N

Lemma 2. In contrast to **Remark 2**, the prediction dynamics in adversarial regularization are governed by the following ODE:

$$\frac{d\boldsymbol{z}(t)}{dt} = \mathcal{H}(t)\left(\boldsymbol{y} - \boldsymbol{z}(t)\right) + \mathcal{H}(t)\nabla_{\boldsymbol{z}(t)}g(\boldsymbol{w}(t), \boldsymbol{a}(t), \boldsymbol{z}(t)).$$
(11)

Lemma 3. (Hoeffding's inequality, two sided (vershynin et al.)) Suppose $\mathbf{a} = (a_1, a_2, \ldots, a_m) \in \{\pm 1\}^m$ be a collection of independent symmetric Bernoulli random variables, and $\mathbf{w} = (w_1, w_2, \ldots, w_m) \in \mathbb{R}^m$. Then, for any t > 0, we have

$$\mathbb{P}\left\{\left|\sum_{r=1}^{m} a_r w_r\right| \ge t\right\} \le 2 \exp\left(-\frac{t^2}{2 \|\boldsymbol{w}\|_2^2}\right).$$
(12)

Lemma 4. Suppose Assumption 1 holds. If we denote $\lambda_{\max}(\mathcal{H}^{\infty})$ by λ_1^{∞} , then $\lambda_{\max}(\mathcal{H}) \leq \frac{\lambda_1}{2} \triangleq \lambda_1^{\infty} + \frac{\lambda_0}{2}$.

The distance from true labels can be bounded by

$$\frac{d}{dt} \|\mathbf{z}(t) - \mathbf{y}\|_{2}^{2} = 2 \left\langle \mathbf{z}(t) - \mathbf{y}, \frac{d\mathbf{z}(t)}{dt} \right\rangle$$

$$= 2 \left\langle \mathbf{z}(t) - \mathbf{y}, -\mathcal{H}(t) \left(\mathbf{z}(t) - \mathbf{y} \right) \right\rangle$$

$$+ 2 \left\langle \mathbf{z}(t) - \mathbf{y}, \mathcal{H}(t) \nabla_{\mathbf{z}(t)} g(\mathbf{w}(t), \mathbf{a}(t), \mathbf{z}(t)) \right\rangle$$
(13)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Lemma 4. Suppose Assumption 1 holds. If we denote $\lambda_{\max}(\mathcal{H}^{\infty})$ by λ_1^{∞} , then $\lambda_{\max}(\mathcal{H}) \leq \frac{\lambda_1}{2} \triangleq \lambda_1^{\infty} + \frac{\lambda_0}{2}$.

The distance from true labels can be bounded by

$$\frac{d}{dt} \|\mathbf{z}(t) - \mathbf{y}\|_{2}^{2} = 2 \left\langle \mathbf{z}(t) - \mathbf{y}, \frac{d\mathbf{z}(t)}{dt} \right\rangle$$

$$= 2 \left\langle \mathbf{z}(t) - \mathbf{y}, -\mathcal{H}(t) \left(\mathbf{z}(t) - \mathbf{y} \right) \right\rangle$$

$$+ 2 \left\langle \mathbf{z}(t) - \mathbf{y}, \mathcal{H}(t) \nabla_{\mathbf{z}(t)} g(\mathbf{w}(t), \mathbf{a}(t), \mathbf{z}(t)) \right\rangle$$
(13)

Since $\lambda_{\min}(\mathcal{H}) \geq \frac{\lambda_0}{2}$ (**Remark 1**) and $\lambda_{\max}(\mathcal{H}) \leq \frac{\lambda_1}{2}$ (Lemma 4), we get

$$\frac{d}{dt} \|\boldsymbol{z}(t) - \boldsymbol{y}\|_{2}^{2} \leq -\lambda_{0} \|\boldsymbol{z}(t) - \boldsymbol{y}\|_{2}^{2} + \lambda_{1} \langle \boldsymbol{z}(t) - \boldsymbol{y}, \nabla_{\boldsymbol{z}(t)} \boldsymbol{g}(\boldsymbol{w}(t), \boldsymbol{a}(t), \boldsymbol{z}(t)) \rangle$$
(14)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Upon simplification using Lemma 3,

$$\frac{d}{dt} \left\| \boldsymbol{z}(t) - \boldsymbol{y} \right\|_{2}^{2} \leq -\lambda_{0} \left\| \boldsymbol{z}(t) - \boldsymbol{y} \right\|_{2}^{2} + \lambda_{1} \mu \left\| \boldsymbol{z}(t) - \boldsymbol{y} \right\|_{2}$$
(15)

For simplicity, let us suppose $\psi = \| \mathbf{z}(t) - \mathbf{y} \|_2^2$. Now,

$$\frac{d\psi}{dt} \le -\lambda_0 \psi + \lambda_1 \mu \psi^{1/2} \tag{16}$$

イロト 不得下 イヨト イヨト 二日

Upon simplification using Lemma 3,

$$\frac{d}{dt} \left\| \boldsymbol{z}(t) - \boldsymbol{y} \right\|_{2}^{2} \leq -\lambda_{0} \left\| \boldsymbol{z}(t) - \boldsymbol{y} \right\|_{2}^{2} + \lambda_{1} \mu \left\| \boldsymbol{z}(t) - \boldsymbol{y} \right\|_{2}$$
(15)

For simplicity, let us suppose $\psi = \|\boldsymbol{z}(t) - \boldsymbol{y}\|_2^2$. Now,

$$\frac{d\psi}{dt} \le -\lambda_0 \psi + \lambda_1 \mu \psi^{1/2} \tag{16}$$

Bernoulli Differential Equation (BDE) (Bernoulli, 1695)

$$rac{dx(t)}{dt} = -P(t)x(t) + Q(t)x^n(t) ext{ for } n \in \mathbb{R} ackslash \{0,1\}$$

Litu Rout (ISRO)

< □ > < □ > < □ > < □ > < □ > < □ >

Exact solution of the BDE:

$$\|\boldsymbol{z}(t) - \boldsymbol{y}\|_{2} \leq (\|\boldsymbol{z}(0) - \boldsymbol{y}\|_{2} - \kappa\mu) \exp\left(-\frac{\lambda_{0}}{2}t\right) + \kappa\mu.$$
(17)

From warm-up exercise, we know for $0 \le s \le t$,

$$\begin{aligned} \left\| \frac{\partial \mathcal{L}_{sup} \left(\boldsymbol{U}, \boldsymbol{v} \right)}{\partial \boldsymbol{u}_{j}(s)} \right\|_{2} &\leq \frac{\sqrt{n}}{\sqrt{m}} \left\| \boldsymbol{z}(s) - \boldsymbol{y} \right\|_{2} \\ &\leq \frac{\sqrt{n}}{\sqrt{m}} \left(\| \boldsymbol{z}(0) - \boldsymbol{y} \|_{2} - \kappa \mu \right) \exp\left(-\frac{\lambda_{0}}{2} t \right) + \frac{\sqrt{n}}{\sqrt{m}} \kappa \mu. \end{aligned}$$

$$\tag{18}$$

Litu Rout (ISRO)

January 6, 2021 21 / 41

э

イロト イポト イヨト イヨト

Pseudo-Reaction-Diffusion Model

Governing Dynamics:

$$\frac{d\boldsymbol{u}_j}{dt} = \Re_j^{\boldsymbol{u}}\left(\boldsymbol{u}_j, \boldsymbol{v}_j\right) + \mathfrak{D}_j^{\boldsymbol{u}}\left(\boldsymbol{u}_j\right)$$
(19)

Reaction Dynamics:

$$\mathfrak{R}_{j}^{\boldsymbol{\mu}}\left(\boldsymbol{u}_{j}(t),\boldsymbol{v}_{j}(t)\right) \leq \frac{\sqrt{n}}{\sqrt{m}}\left(\|\boldsymbol{z}(0)-\boldsymbol{y}\|_{2}-\kappa\mu\right)\exp\left(-\frac{\lambda_{0}}{2}t\right) + \frac{\sqrt{n}}{\sqrt{m}}\kappa\mu.$$
(20)

3

A D N A B N A B N A B N

Pseudo-Reaction-Diffusion Model

Governing Dynamics:

$$\frac{d\mathbf{u}_j}{dt} = \Re_j^{\boldsymbol{u}}\left(\mathbf{u}_j, \mathbf{v}_j\right) + \mathfrak{D}_j^{\boldsymbol{u}}\left(\mathbf{u}_j\right)$$
(19)

Reaction Dynamics:

$$\mathfrak{R}_{j}^{\boldsymbol{\mu}}\left(\boldsymbol{u}_{j}(t),\boldsymbol{v}_{j}(t)\right) \leq \frac{\sqrt{n}}{\sqrt{m}}\left(\|\boldsymbol{z}(0)-\boldsymbol{y}\|_{2}-\kappa\mu\right)\exp\left(-\frac{\lambda_{0}}{2}t\right) + \frac{\sqrt{n}}{\sqrt{m}}\kappa\mu.$$
(20)

Diffusion Dynamics:

 $\mathfrak{D}_{j}^{\boldsymbol{u}}\left(\boldsymbol{u}_{j}
ight)\leq?$

3

イロト イポト イヨト イヨト

Reaction With Diffusion: Diffusion Term

Augmented part:

$$\left\|\frac{d\boldsymbol{u}_{j}(\boldsymbol{s})}{d\boldsymbol{s}}\right\|_{2} \leq \left\|\frac{\partial \mathcal{L}_{sup}\left(\boldsymbol{U},\boldsymbol{v}\right)}{\partial \boldsymbol{u}_{j}(\boldsymbol{s})}\right\|_{2} + \left\|\frac{\partial}{\partial \boldsymbol{u}_{j}(\boldsymbol{s})}\sum_{p=1}^{n}g\left(\boldsymbol{w},\boldsymbol{a},\boldsymbol{z}_{p}\right)\right\|_{2}$$
(21)

Upon expansion,

$$\left\| \frac{\partial}{\partial \boldsymbol{u}_{j}(s)} \sum_{p=1}^{n} g\left(\boldsymbol{w}, \boldsymbol{a}, \boldsymbol{z}_{p}\right) \right\|_{2}$$

$$= \left\| \sum_{p=1}^{n} \sum_{r=1}^{m} \frac{1}{\sqrt{m}} \boldsymbol{a}_{r} \boldsymbol{1}_{\{\boldsymbol{w}_{r}\boldsymbol{z}_{p} \geq 0\}} \boldsymbol{w}_{r} \frac{1}{\sqrt{m}} \boldsymbol{v}_{j} \boldsymbol{1}_{\{\boldsymbol{v}_{j}^{T} \boldsymbol{x}_{p} \geq 0\}} \boldsymbol{x}_{p} \right\|_{2}$$

$$(22)$$

(日) (四) (日) (日) (日)

э

Reaction With Diffusion: Diffusion Term

By triangle inequality, Cauchy-Schwarz inequality, and Lemma 3, we get

$$\left\| \frac{\partial}{\partial \boldsymbol{u}_{j}(s)} \sum_{p=1}^{n} g\left(\boldsymbol{w}, \boldsymbol{a}, \boldsymbol{z}_{p}\right) \right\|_{2} \leq \frac{1}{m} \sum_{p=1}^{n} \left\| \boldsymbol{v}_{j} \boldsymbol{1}_{\left\{\boldsymbol{v}_{j}^{T} \boldsymbol{x}_{p} \geq 0\right\}} \boldsymbol{x}_{p} \sum_{r=1}^{m} \boldsymbol{a}_{r} \boldsymbol{w}_{r} \boldsymbol{1}_{\left\{\boldsymbol{w}_{r} \boldsymbol{z}_{p} \geq 0\right\}} \right\|_{2}$$

$$\leq \frac{1}{m} \sum_{p=1}^{n} \left\| \sum_{r=1}^{m} \boldsymbol{u}_{r} \right\|_{2} \sqrt{2 \log \left(\frac{2}{\delta}\right)}$$

$$\leq \frac{\ln \sqrt{2 \log \left(\frac{2}{\delta}\right)}}{m} = \mathcal{O}\left(\frac{\mu}{\sqrt{m}}\right)$$
(23)

Image: A match a ma

Reaction Dynamics:

$$\mathfrak{R}_{j}^{u}(\boldsymbol{u}_{j}(t)) \leq \frac{\sqrt{n}}{\sqrt{m}} \left(\|\boldsymbol{z}(0) - \boldsymbol{y}\|_{2} - \kappa \mu \right) \exp\left(-\frac{\lambda_{0}}{2}t\right) + \frac{\sqrt{n}}{\sqrt{m}} \kappa \mu.$$
(24)

Diffusion Dynamics:

$$\mathfrak{D}_{j}^{u}(\boldsymbol{u}_{j}(t)) \leq \frac{Ln\sqrt{2\log\left(\frac{2}{\delta}\right)}}{m}.$$
(25)

Integrating over $0 \le s \le t$,

$$\begin{aligned} \|\boldsymbol{u}_{j}(t) - \boldsymbol{u}_{j}(0)\|_{2} &\leq \int_{0}^{t} \left\| \frac{d\boldsymbol{u}_{j}(s)}{ds} \right\|_{2} ds \\ &\leq \int_{0}^{t} \mathfrak{R}_{j}^{u}(\boldsymbol{u}_{j}(s)) + \mathfrak{D}_{j}^{u}(\boldsymbol{u}_{j}(s)) ds. \end{aligned}$$
(26)

- 34

イロト イボト イヨト イヨト

Individual Neuron

$$\|\boldsymbol{u}_{j}(t) - \boldsymbol{u}_{j}(0)\|_{2} \leq \mathcal{O}\left(\frac{n^{3/2}}{m^{1/2}\lambda_{0}\delta} + \left(\frac{\mu(1+\kappa\sqrt{n})}{m^{1/2}}\right)t\right)$$

3

A D N A B N A B N A B N

Individual Neuron

$$\|\boldsymbol{u}_{j}(t) - \boldsymbol{u}_{j}(0)\|_{2} \leq \mathcal{O}\left(\frac{n^{3/2}}{m^{1/2}\lambda_{0}\delta} + \left(\frac{\mu(1+\kappa\sqrt{n})}{m^{1/2}}\right)t\right)$$

Spatial Grid of Neurons

$$\| \boldsymbol{U}(t) - \boldsymbol{U}(0) \|_{F} \leq \mathcal{O}\left(\frac{n^{3/2}}{\lambda_{0}\delta} + \mu \left(1 + \kappa \sqrt{n} \right) t \right)$$

Litu Rout (ISRO)

Pseudo-Reaction-Diffusion Model

January 6, 2021 26 / 41

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Individual Neuron

$$\|\boldsymbol{u}_{j}(t) - \boldsymbol{u}_{j}(0)\|_{2} \leq \mathcal{O}\left(\frac{n^{3/2}}{m^{1/2}\lambda_{0}\delta} + \left(\frac{\mu(1+\kappa\sqrt{n})}{m^{1/2}}\right)t\right)$$

Spatial Grid of Neurons

$$\|oldsymbol{U}(t) - oldsymbol{U}(0)\|_F \leq \mathcal{O}\left(rac{n^{3/2}}{\lambda_0\delta} + \mu\left(1 + \kappa\sqrt{n}
ight)t
ight)$$

Breakdown Threshold

$$m = \Omega\left(\left(\frac{n^{7/2}}{\lambda_0^2\delta^2} + \frac{n^2\mu(1+\kappa\sqrt{n})\tau_0}{\lambda_0\delta}\right)^2\right)$$

Litu Rout (ISRO)

э

(日) (四) (日) (日) (日)

Jointly Training Both Layers

Theorem (Reaction-Diffusion Dynamics)

If we absorb constants in $\mathcal{O}(.)$ and set $(\mathbf{y}_p - \mathbf{z}_p)_i v_{ij} \mathbf{1}_{\{\mathbf{u}_j^T \mathbf{x}_p \ge 0\}} \mathbf{x}_{p,k} = \mathcal{O}(1)$ for $i \in [d_{out}]$ and $p \in [n]$, then for all $j \in [m]$ the RD dynamics satisfy:

$$\begin{split} \mathfrak{R}_{j}^{\boldsymbol{u}}\left(\boldsymbol{u}_{j},\boldsymbol{v}_{j}\right) &= \mathcal{O}\left(nd_{in}\sqrt{\frac{d_{out}}{m}}\right),\\ \mathfrak{D}_{j}^{\boldsymbol{u}}\left(\nabla^{2}\boldsymbol{u}_{j}\right) &= \mathcal{O}\left(nm^{2}d_{in}d_{out}^{3/2}\right),\\ \mathfrak{R}_{j}^{\boldsymbol{v}}\left(\boldsymbol{u}_{j},\boldsymbol{v}_{j}\right) &= \mathcal{O}\left(nd_{in}\sqrt{\frac{d_{out}}{m}}\right),\\ \mathfrak{D}_{j}^{\boldsymbol{v}}\left(\nabla^{2}\boldsymbol{v}_{j}\right) &= \mathcal{O}\left(nm^{2}d_{in}d_{out}^{1/2}\right). \end{split}$$

Litu Rout (ISRO)

э

イロト イヨト イヨト イヨト

Experiments

- Linear Rate: Solution in a larger subspace around initialization.
- Theorem 1: Maintaining symmetry and homogeneity.
- Theorem 2: Breakdown of symmetry and homogeneity.

▲ □ ▶ ▲ □ ▶ ▲ □

Experiments

- Linear Rate: Solution in a larger subspace around initialization.
- Theorem 1: Maintaining symmetry and homogeneity.
- Theorem 2: Breakdown of symmetry and homogeneity.

Litu Rout (ISRO)

Experimental Results: Linear Rate

47 ▶

Experimental Results: Linear Rate

э

A D N A B N A B N A B N

Experimental Results: Dissecting Diffusion

Experiments

- Linear Rate: Solution in a larger subspace around initialization.
- Theorem 1: Maintaining symmetry and homogeneity.
- Theorem 2: Breakdown of symmetry and homogeneity.

Litu Rout (ISRO)

Turing Patterns by RD Model

Reaction-Diffusion Model

$$\frac{d\mathbf{u}_{j}}{dt} = \mathfrak{R}_{j}^{\boldsymbol{u}}\left(\mathbf{u}_{j}, \mathbf{v}_{j}\right) + \mathfrak{D}_{j}^{\boldsymbol{u}}\left(\nabla^{2}\mathbf{u}_{j}\right),$$
$$\frac{d\mathbf{v}_{j}}{dt} = \mathfrak{R}_{j}^{\boldsymbol{v}}\left(\mathbf{u}_{j}, \mathbf{v}_{j}\right) + \mathfrak{D}_{j}^{\boldsymbol{v}}\left(\nabla^{2}\mathbf{v}_{j}\right).$$

Turing-like Patterns by PRD Model: Synthetic Dataset

	Litu	Rout ((ISRO)
--	------	--------	-------	---

January 6, 2021 35 / 41

• • • • • • • • • • • •

Turing-like Patterns by PRD Model: MNIST

January 6, 2021 36 / 41

3

A D N A B N A B N A B N

Turing-like Patterns by PRD Model: FashionMNIST

Pseudo-Reaction-Diffusion Model

January 6, 2021 37 / 41

Turing-like Patterns by Gray-Scott Model

Gray-Scott Model

$$\frac{\partial u}{\partial t} = F(1-u) - uv^2 + \mu' \nabla^2 u$$

$$\frac{\partial v}{\partial t} = -(F+k)v + uv^2 + \nu' \nabla^2 v$$
Parameters

$$F = 0.025, K = 0.055, \mu' = 2e - 5, \nu' = 1e - 5$$

3

イロト イヨト イヨト イヨト

Turing-like Patterns by Gray-Scott Model

Gray-Scott Model

$$\frac{\partial u}{\partial t} = F(1-u) - uv^2 + \mu'\nabla^2 u$$

$$\frac{\partial v}{\partial t} = -(F+k)v + uv^2 + \nu'\nabla^2 v$$
Parameters

$$F = 0.025, K = 0.060, \mu' = 2e - 5, \nu' = 1e - 5$$

3

A D N A B N A B N A B N

Importance of Diffusion in PRD Model

- Reminiscent of patterns observed in nature
- Interpretable kernel weights
- Feature visualization:

$$\delta_{j} = \arg \max_{\delta \in \Delta} \boldsymbol{u}_{j}^{T} \left(x + \delta \right)$$

• • • • • • • • • • • •

Pseudo-Reaction-Diffusion Model

Summary

- Exponentially fast convergence of over-parameterized networks under adversarial interaction.
- Theoretical justification of symmetry and homogeneity.
- Exploration of larger subspace around initialization beyond breakdown of symmetry and homogeneity.
- Interpretable kernels in regularized adversarial learning.
- Turing-like pattern formation under mild diffusion.
- Resemblance with naturally occurring Bernoulli differential equation.

< □ > < □ > < □ > < □ > < □ > < □ >