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1 OBJECTIVES

Long after Turing’s seminal Reaction-Diffusion
(RD) model, the elegance of his fundamental
equations alleviated much of the skepticism sur-
rounding pattern formation. Interestingly, we ob-
serve Turing-like patterns in a system of neurons
with adversarial interaction. In this study, we es-
tablish the following:

1. Involvement of Turing instability.
2. A Pseudo-Reaction-Diffusion model.
3. Symmetry and homogeneity.
4. Breakdown of symmetry and homogeneity.

2 INTRODUCTION

In this paper, we intend to demystify an inter-
esting phenomenon: adversarial interaction be-
tween generator and discriminator creates non-
homogeneous equilibrium by inducing Turing in-
stability in a Pseudo-Reaction-Diffusion (PRD)
model. This is in stark contrast to sole supervi-
sion. Thus we state our key observation:

A system in which a generator and a discriminator
adversarially interact with each other exhibits

Turing-like patterns in the hidden layer and top layer
of the two layer generator network.

5 EXPERIMENTAL RESULTS
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Figure 1: Distance from multiple initialization in the (a)
hidden layer and (b) top layer on MNIST.

Figure 2: Input image used for the visualization of fea-
tures in the hidden layer.
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Figure 3: Hidden layer filters on MNIST. (a) Without
Diffusion. (b) With Diffusion.
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Figure 4: Visualization of features on MNIST. (a) With-
out Diffusion. (b) With Diffusion.

REFERENCE

[1] A.M. Turing. The chemical basis of morphogenesis.
Phil. Trans. of the Royal Soc. of London, 1952.

7 FUTURE SCOPE

Though diffusibility ensures more local interac-
tion, it will certainly be interesting to synchronize

neurons based on breakdown of symmetry and
homogeneity in the future.
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6 TURING INSTABILITY IN ADVERSARIAL LEARNING
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Figure 5: Breakdown of symmetry and homogeneity.
(a) Without Diffusion. (b) With Diffusion.
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Figure 6: Turing pattern formation. The diffusible fac-
tors help break the symmetry and homogeneity.
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Figure 7: Pattern formation on synthetic data, din = 784
without Diffusion.
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Figure 8: Pattern formation on synthetic data, din = 784
with Diffusion.

3 PRELIMINARIES

Supervised Training:
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Regularized Adversarial Training:
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Learning Algorithm:

dujk
dt

= −∂Laug (U(t),V (t),W (t),a(t))
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,
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Pseudo-Reaction-Diffusion Model[1]:
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4 THEORETICAL ANALYSIS

(Informal) Theorem 1. (Symmetry and Homo-
geneity) Suppose the necessary assumptions hold.
We obtain the following with probability at least 1− δ:

‖uj(t)− uj(0)‖2 ≤ O
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(Informal) Theorem 2. (Breakdown of Symme-
try and Homogeneity) If the required conditions are
satisfied, then with probability at least 1− δ, we get
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Analogous Bernoulli Differential Equation:
Modeling Population Growth,

dP

dt
= rP

(
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)
. (1)

Modeling Regularized Adversarial Training,
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. (2)


