Rotation Adaptive Visual Object Tracking with Motion Consistency
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Introduction: Proposed methodology:
> Visual Object tracking research has undergone significant improvement > Motion Consistency: Proposed SiameseFC DSR
in the past few years. ' A S —
> The emergence of tracking by detection approach in tracking paradigm A 127x127x3x19 FeatureMaps | —

has been quite successful in many ways. Recently, deep convolutional
neural networks have been extensively used in most successful trackers.

> Yet, the standard approach has been based on correlation or feature
selection with minimal consideration given to motion consistency.

> |n this study the major contributions can be summarized as following:
* A generic approach for incorporating rotation invariance (RI) in object
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 The conventional approach to estimate Results and Conclusions:
size of the target object is to form a _ _ | |
scale pyramid and compute response — > The work demonstrated a way to incorporate Rotation Invariance (RI) in
map using each of these images. : | T - generic object tracking.
* The corresponding scale of the > The introduction of scale and displacement consistency enhanced the
>  Sample frames from glove sequence regarded as one of the toughest o aaobs haan‘q’g”ng iyl pomatpammens: degree of smoothness on physical movement variables such as speed
sequences according to VOT 2016 results. First column indicates the on po se mans detarmin e% he size of o ot onehs Scupe, 1t remvenents the index of the win and angles. | o
round truth bounding box in the first frame. Our modified SiameseFC h eQar ot Obi gct and taraet centroid hing response map. o, represents the standard de- > The success rate improved by 4.6% whereas precision, by 6.75%
red) successfully tracks the geometric  deformations unlike original £ i 9 " J e t gt ol t o viation of Gaussian Weigh“-lsgﬂegjns numerically relative to baseline approach on OTB dataset.
. [ represents e€acn scale 1.€. scaiepins represents tne . . . .
lameseFC(yellow) | - C%ﬁg;!te'%” due o o Use. S?IWiln?r?g first scale, scaleBin(2) represents the second scale and >  The Proposed Siamese DSR gave a drastic improvement in robustness
T O 0 response map only, it will persist in e soale pyrmid, o umberafsesles used rank by 15.7% and accuracy rank by 14.3% on VOT 2016 database.
subsequent frames. In this standard >, Computation of scale weights and updation of re- > Our future research may include replacing the simple CNN present in
scenario, the response maps that sponseMap: both Siamese and CFnet architectures with a very deep CNN.
correspond to different scales aren't Define weiehts for cach scal Success plots of OPE Precision olots of OPE
used in determining the centroid. g T ey = IR
+ We propose to use Gaussian weighted ) responseMap— e —roruay’ Q
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>  Sample frames from Bird1 sequence, one of the toughest sequences in scale pyramid. N Yy ]
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trackers have not deviated much from the target centroid mainly due to L | | o
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