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Introduction:  
➢ Visual Object tracking research has undergone significant improvement 

in the past few years.  
➢ The emergence of tracking by detection approach in tracking paradigm 

has been quite successful in many ways. Recently, deep convolutional 
neural networks have been extensively used in most successful trackers.  

➢ Yet, the standard approach has been based on correlation or feature 
selection with minimal consideration given to motion consistency.  

➢ In this study the major contributions can be summarized as following: 
• A generic approach for incorporating rotation invariance (RI) in object 

tracking  
• Introduction of motion consistencies    

• Displacement consistency  
• Scale consistency 

Proposed methodology: 
➢ Motion Consistency: 

➢ Sample frames from glove sequence regarded as  one of the toughest 
sequences according to VOT  2016 results. First column indicates the 
ground truth bounding box in the first frame. Our modified SiameseFC 
(red) successfully tracks the geometric  deformations unlike original 
SiameseFC(yellow)
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Figure 3. Correlation filter network. An additional correlation fil-
ter block in exemplar branch brings robustness to translation. End-
to-end training model of a correlation filter which uses CNN fea-
tures [26].
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Figure 4. Conventional target centroid update strategy. Let
[X1, Y1] and [X2, Y2] represent the target centroids in the first and
second frame respectively. Let [X3, Y3] represent the predicted
centroid in the third frame. Let [X3c, Y3c] represents the updated
centroid in the third frame. Let � represents the angular deviation
occurred due to conventional centroid update.

to more reliable tracking. This can be noticed by observ-
ing the Figure 10. Due to the incremental angular deviation
�, the target centroid keeps drifting away from the actual
centroid which decreases the overlap ratio. It is observed
from Table 2 that minimizing this deviation � as proposed
has increased the success as well as precision.

[X3c, Y3c] = w ⇥ [X2, Y2] + (1� w)⇥ [X3, Y3] (3)

We have integrated a new displacement consistency ap-
proach on top of the conventional approach to enhance the
degree of smoothness. The angle consistency is illustrated
in Figure 5. In distance consistency, the algorithm remem-
bers the previous distance encountered and updates the new
distance using rolling average. A pictorial representation
of distance consistency is elucidated in Figure 6. After
displacement consistency, the new centroid of the target
is computed using equation (6). The accuracy and robust-
ness after these integrations along with original values have
been provided in section 4 which proves the efficacy of the
scheme.

✓1n = w✓ ⇥ ✓0 + (1� w✓)⇥ ✓1 (4)

d1n = wd ⇥ d0 + (1� wd)⇥ d1 (5)

[X3n, Y3n] = [X2, Y2] + d1n\✓1n (6)
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Figure 5. Angle consistency. Let ✓1 represents the angle of the
centroid in the third frame with respect to the centroid in the sec-
ond frame. Let ✓0 represents the angle of the centroid in the second
frame with respect to the first. Let ✓1n represents the updated an-
gle in the third frame. Let [X3a, Y3a] represents the new updated
centroid by using equation (4) with 1% weight given to previous
angle i.e. w✓ = 0.01.
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Figure 6. Distance consistency. Let d0 represents the distance of
centroid from frame 1 to 2. Let d1 represents the distance from
frame 2 to 3 after angle consistency. Let d1n represents the up-
dated distance obtained by using equation (5) with 1% preference
given to previous distance i.e. wd = 0.01. Let [X3n, Y3n] repre-
sents the final position of the centroid after Displacement consis-
tency.

3.4. Scale Consistency

The conventional approach to estimate size of the target
object is to form a scale pyramid and compute response
map using each of these images [19]. The corresponding
scale of the response map having maximum response
score among all these response maps determines the size
of the target object. Then that particular response map
is used for obtaining the target centroid. In this standard
approach, only the winning response map i.e the map
having maximum response score among all maps decides
the size of the object. However, as we know that in real
scenarios, the scale of the object doesn’t undergo drastic
change from frame to frame as the scale change depends
on the distance of the object from camera and as the
objects move smoothly in many real scenarios. Though
there are methods which add a penalty factor to the new
target size, this applies only to the size of the target object.
However, if the position of the target centroid itself is

Figure 3. Correlation filter network. An additional correlation fil-
ter block in exemplar branch brings robustness to translation. End-
to-end training model of a correlation filter which uses CNN fea-
tures [26].
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Figure 4. Conventional target centroid update strategy. Let
[X1, Y1] and [X2, Y2] represent the target centroids in the first and
second frame respectively. Let [X3, Y3] represent the predicted
centroid in the third frame. Let [X3c, Y3c] represents the updated
centroid in the third frame. Let � represents the angular deviation
occurred due to conventional centroid update.

to more reliable tracking. This can be noticed by observ-
ing the Figure 10. Due to the incremental angular deviation
�, the target centroid keeps drifting away from the actual
centroid which decreases the overlap ratio. It is observed
from Table 2 that minimizing this deviation � as proposed
has increased the success as well as precision.

[X3c, Y3c] = w ⇥ [X2, Y2] + (1� w)⇥ [X3, Y3] (3)

We have integrated a new displacement consistency ap-
proach on top of the conventional approach to enhance the
degree of smoothness. The angle consistency is illustrated
in Figure 5. In distance consistency, the algorithm remem-
bers the previous distance encountered and updates the new
distance using rolling average. A pictorial representation
of distance consistency is elucidated in Figure 6. After
displacement consistency, the new centroid of the target
is computed using equation (6). The accuracy and robust-
ness after these integrations along with original values have
been provided in section 4 which proves the efficacy of the
scheme.

✓1n = w✓ ⇥ ✓0 + (1� w✓)⇥ ✓1 (4)

d1n = wd ⇥ d0 + (1� wd)⇥ d1 (5)

[X3n, Y3n] = [X2, Y2] + d1n\✓1n (6)
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Figure 5. Angle consistency. Let ✓1 represents the angle of the
centroid in the third frame with respect to the centroid in the sec-
ond frame. Let ✓0 represents the angle of the centroid in the second
frame with respect to the first. Let ✓1n represents the updated an-
gle in the third frame. Let [X3a, Y3a] represents the new updated
centroid by using equation (4) with 1% weight given to previous
angle i.e. w✓ = 0.01.
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Figure 6. Distance consistency. Let d0 represents the distance of
centroid from frame 1 to 2. Let d1 represents the distance from
frame 2 to 3 after angle consistency. Let d1n represents the up-
dated distance obtained by using equation (5) with 1% preference
given to previous distance i.e. wd = 0.01. Let [X3n, Y3n] repre-
sents the final position of the centroid after Displacement consis-
tency.

3.4. Scale Consistency

The conventional approach to estimate size of the target
object is to form a scale pyramid and compute response
map using each of these images [19]. The corresponding
scale of the response map having maximum response
score among all these response maps determines the size
of the target object. Then that particular response map
is used for obtaining the target centroid. In this standard
approach, only the winning response map i.e the map
having maximum response score among all maps decides
the size of the object. However, as we know that in real
scenarios, the scale of the object doesn’t undergo drastic
change from frame to frame as the scale change depends
on the distance of the object from camera and as the
objects move smoothly in many real scenarios. Though
there are methods which add a penalty factor to the new
target size, this applies only to the size of the target object.
However, if the position of the target centroid itself is

corrupted due to the use of wining response map only, it
will persist in subsequent frames. In this standard scenario,
the response maps that correspond to different scales aren’t
used in determining the centroid. Therefore, we propose
to use Gaussian weighted average response map centred
at the winning map and have variance as an additional
hyper parameter. In this way we can incorporate the
response maps that correspond to various scales in the scale
pyramid. Our approach has enhanced the accuracy as well
as robustness of the considered base trackers. The results
of this experiment are described in details in section 4. The
pseudo code for Gaussian weighted average response map
is provided in Algorithm I.

Algorithm I : Scale Consistency using Gaussian weights

1. Input parameters :

Let responseMaps represents the stack of response
maps at each scale. µ represents the index of the win-
ning response map. �scale represents the standard de-
viation of Gaussian weights. scaleBins numerically
represents each scale i.e. scaleBins(1) represents the
first scale, scaleBins(2) represents the second scale and
so on. Let N represents the total number of scales used
in the scale pyramid.

2. Computation of scale weights and updation of re-
sponseMap:

(a) Define weights for each scale as
scaleWeights = 1p

2⇥⇡⇥�scale
exp�( scaleBins�µ

�scale
)2

(b) responseMap =PN
i=1[responseMaps(i)⇥ scaleWeights(i)]

3. Output response map : The output of this algorithm
is the Gaussian weighted average responseMap.

3.5. Rotation Invariance

In this section 3.5, we will discuss two different ways of
incorporating rotation adaptiveness in tracking algorithms
such as the proposed rotation invariant SiameseFC 3.5.1
and rotation invariant CFnet 3.5.2. The former can be used
where the target object is not updated after each frame and
the later can be used where the object is updated after each
frame.

3.5.1 Rotaion Invariant SiameseFC

When an object is in motion it can assume any of its rotated
form or view from frame to frame. However, convention-
ally only a base template with a fixed (zero) orientation is

employed to find the similarity. To incorporate robust RI
tracking, we propose to augment various possible rotated
images of the object and measure similarity with all these
rotated images. The working of rotation invariant Siamese
fully convolutional network has been illustrated in Figure 8.
Since the appearance model isn’t updated during tracking,
the corresponding features of rotated exemplar can be ex-
tracted once for a sequence. Since the angle of rotation does
not change drastically from frame to frame, only 5 nearest
neighbour response maps are used in computing response
map. The mean of the Gaussian weights is considered as the
index of the winning response map and variance is tuned as
an additional hyper-parameter in the similar manner as ex-
plained for different scales in 3.4. In order to avoid false
alarm, we have computed three Gaussian weighted average
response maps centred at top three maps according to their
response scores. Accordingly there would be three most
probable target centroids, out of which the final centroid
is selected based on the highest score to displacement ra-
tio in a sense that the object wouldn’t have travelled far
from its previous location. In this approach, as the path
with dominant direction is detected, the bounding box can
be rotated accordingly to increase the overlap ratio. A com-
parison between SiameseFC and rotation invariant Siame-
seFC is shown in Figure 7. We have evaluated our rotation
invariant SiameseFC on VOT datasets [17] and the obtained
results are provided in 4.

3.5.2 Rotation Invariant CFnet

Unlike rotation invariant SiameseFC, in rotation invariant
CFnet the exemplar is updated after every frame [26]. In
the second frame the object itself would have undergone
some rotation. So there is no need to extract features from
all the rotated exemplars beforehand, instead only forward
and backward rotations after each model update would suf-
fice. Therefore, there is no need to feed the angle of rota-
tion back. Thus, there would be three response maps cor-
responding to each of the three rotations. Since we have
only three response maps corresponding to three nearest
neighbour angles and each response map itself is a Gaus-
sian weighted average map performed by the S-Corr block,
there is no need to compute average of the three rotated
maps again. The final centroid is computed by using the
map having highest response score among all the three. In
fact, using Gaussian weighted average after scale correction
doesn’t seem to improve the performance much, though it
would be useful when more nearest neighbour rotated ex-
emplars are used. This is a general approach which can
be integrated into any state-of-the-art trackers to enhance
their performance further. The rotation invariant CFnet is
illustrated in Figure 9. The results of our proposed CFnet
DS and CFnet DSR can be found in section 4. In rest of

➢ Scale Consistency: 
• The conventional approach to estimate 

size of the target object is to form a 
scale pyramid and compute response 
map using each of these images. 

• The corresponding scale of the 
response map having maximum 
response score among all these 
response maps determines the size of 
the target object and target centroid.  

• if the position of the target centroid itself 
is corrupted due to the use of wining 
response map only, it will persist in 
subsequent frames. In this standard 
scenario, the response maps that 
correspond to different scales aren’t 
used in determining the centroid.  

•  We propose to use Gaussian weighted 
average response map centred at the 
winning map and have variance as an 
additional hyper parameter. In this way 
we can incorporate the response maps 
that correspond to various scales in the 
scale pyramid. 

Results and Conclusions: 
➢ The work demonstrated a way to incorporate Rotation Invariance (RI) in 

generic object tracking.  
➢ The introduction of scale and displacement consistency enhanced the 

degree of smoothness on physical movement variables such as speed 
and angles. 

➢ The success rate improved by 4.6% whereas precision, by 6.75% 
relative to  baseline approach on OTB dataset.  

➢ The Proposed Siamese DSR gave a drastic improvement in robustness 
rank by 15.7% and accuracy rank by 14.3% on VOT 2016 database. 

➢ Our future research may include replacing the simple CNN present in 
both Siamese and CFnet architectures with a very deep CNN. 

Proposed SiameseFC DSR

Proposed CFnet DSR

Figure 9. Rotation Invariant Correlation filter network. The input exemplar image is rotated by ✓ = [-⇣, 0�, +⇣]. Here, ⇣ = 10� represents
the angle of rotation of the exemplar. The angle of rotation 0� represents the actual cropped exemplar image obtained after each iteration.
Thus, the three feature maps of rotated exemplar are correlated with the feature map of instance image which produce three most probable
response maps. Let S-Corr and D-Corr blocks represent scale 3.4 and displacement 3.3 corrections respectively. The S-Corr block performs
scale correction on these three response maps. The GWA block computes Gaussian weighted average response map centred at the winning
response map. The D-Corr block performs displacement correction and computes the final target centroid.

Figure 10. Sample frames from Bird1 sequence, one of the toughest sequences in OTB50 [29]. The results are obtained using fully
integrated OTB toolkit. Our trackers have not deviated much from the target centroid mainly due to the integration of displacement
correction.

Figure 11. OTB50 success plot(AUC) obtained using OTB toolkit
(Values are scaled down from 100 to 1 by the toolkit). Original
CFnet-conv2 success rate(OPE) for OTB50 is equal to 0.527 as
per the evaluation in our system.

trackers. The success(AUC) and precision plots obtained
by using fully integrated OTB toolkit are shown in Figure
11 and Figure 12 respectively.

As per the results obtained using fully integrated vot-
toolkit as shown in Table 4, an improvement of 15.57% in

Figure 12. OTB50 precision plot obtained using OTB toolkit.
Original CFnet-conv2 precision(OPE) for OTB50 is equal to 0.702
[26] as per the evaluation in our system.

accuracy rank and 14.3% in robustness rank have been ob-
served with no degradation in overlap ratio. Since the abso-
lute value of the accuracy and robustness rank varies based
on the trackers used for evaluation, the relative improve-
ments of proposed methods over the original have been used
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