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Introduction to Optimal Transport

(a) Monge formulation (1785). (b) Kantorovich formulation (1942).

Monge Problem (MP):

• Cost(µ, ν) def
= inf

T#µ=ν

∫
X
c (x, T (x)) dµ(x).

• The feasible set of solutions can be empty.
• MP does not allow mass splitting.

Kantorovich Problem (KP):

• Cost(µ, ν) def
= inf

π∈Π(µ,ν)

∫
X×Y

c (x, y) dπ(x, y).
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Introduction to Optimal Transport

Kantorovich Dual Problem (Kantorovich, 1942, KDP) :

Cost(µ, ν) = sup
(u,v)

{∫
X
u(x)dµ(x) +

∫
Y
v(y)dν(y) : u(x) + v(y) ≤ c(x, y)

}
,

Using c-transform, i.e., vc(x) = inf
y∈Y

{c(x, y)− v(y)}, KDP becomes

(Villani, 2008, M5):

Cost(µ, ν)=sup
v

{∫
X
vc(x)dµ(x)+

∫
Y
v(y)dν(y)

}

• KDP allows optimization over one functional u or v.
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Optimal Transport in Generative Models

(a) OT cost as the loss for the generator.
(b) OT map as the
generative model.
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Optimal Transport as the Generative Map

Figure 3: The pipeline of most prevalent approaches (Taghvaei &
Jalali, 2019; Makkuva et al., 2020; Korotin et al., 2021).

• Compute OT maps in latent spaces of autoencoders.

• OT maps are not considered in ambient spaces.

• Lack scalability due to poor expressivity of ICNNs.
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Equal Dimensions of Input and Output

With ψ(y) def
=

1

2
∥y∥2 − v(y), the c-transform of Kantorovich

potential v(y) becomes:

vc(x) = inf
y∈RD

{
1

2
∥x− y∥2 − v(y)

}
=

1

2
∥x∥2 − sup

y∈RD

{⟨x, y⟩ − ψ(y)} =
1

2
∥x∥2 − ψ(x).

(1)

Substituting (1), KDP simplifies to

Constant(µ, ν)− inf
ψ

{
sup
T

∫
X

{
⟨x, T (x)⟩ − ψ

(
T (x)

)}
dµ(x) +

∫
Y
ψ(y)dν(y)

}
(2)

• We prove that the OT map T ∗ is the solution of the inner
maximization problem (2), see Lemma 4.2 in our paper.
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Unequal Dimensions of Input and Output

Figure 4: The scheme of our approach.

inf
ψ

sup
G

{∫
X

{
⟨Q(x), G(x)⟩ − ψ

(
G(x)

)}
dµ(x) +

∫
Y
ψ(y)dν(y)

}
(3)

• We prove that the OT map G∗ and potential ψ∗ are the
solutions of the saddle point problem (3).

10



Overview

Introduction

Optimal Transport in Generative Models

Proposed Optimal Transport Modeling

Experimental Results

Conclusion

11



Generative Modeling: Qualitative Results

(a) CelebA, 64× 64, RGB, FID: 6.5

(b) CelebA, 128× 128, RGB, FID: 24.58 12



Generative Modeling: Quantitative Results

Table 1: Results on CelebA, 64x64 dataset.

Model Related Work FID ↓
DCGAN Radford et al. (2016) 52.0
DRAGAN Kodali et al. (2017) 42.3
BEGAN Berthelot et al. (2017) 38.9
NVAE Vahdat & Kautz (2020) 13.4
NCP-VAE Aneja et al. (2021) 5.2
WGAN Arjovsky et al. (2017) 41.3
WGAN-GP Gulrajani et al. (2017) 30.0
WGAN-QC Liu et al. (2019) 12.9
AE-OT An et al. (2020a) 28.6
W2GN+AE Korotin et al. (2021) 17.2
AE-OT-GAN An et al. (2020b) 7.8
OTM Ours 6.5
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Unpaired Restoration

(a) Noisy (b) Pushforward (c) Original

Model Denoising Colorization Inpainting
Input 166.59 32.12 47.65
WGAN-GP 25.49 7.75 16.51
OTM-GP (ours) 10.95 5.66 9.96
OTM (ours) 5.92 5.65 8.13
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Summary

• We proposed to fit the OT map in quadratic transport cost
W2

2 (µ, ν) which acts as a generative map.

• We developed an end-to-end solution for equal and
unequal dimensions of input and output distributions.

• We demonstrated OTM in unpaired restoration tasks:
denoising, colorization, and inpainting.
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Conclusion

Generative Modeling with Optimal Transport Maps

Stop by our poster to learn more about our research.

arxiv.org/pdf/2110.02999.pdf
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