

Introduction to Optimal Transport

Monge Problem (MP):

- $\mathsf{Cost}(\mu, \nu) \stackrel{\mathrm{def}}{=}$ $\inf_{T_{\#}\mu=\nu} \int_{\mathcal{X}} c(x, T(x)) \, d\mu(x).$
- The feasible set of solutions can be empty.
- MP does not allow mass splitting.

Kantorovich Problem (KP):

• $\mathsf{Cost}(\mu, \nu) \stackrel{\mathrm{def}}{=}$ $\inf_{\pi \in \Pi(\mu,\nu)} \int_{\mathcal{X} \times \mathcal{Y}} c(x,y) \, d\pi(x,y).$

(b) Kantorovich formulation (1942).

Kantorovich Dual Problem (KDP):

 $\operatorname{Cost}(\mu,\nu) = \sup_{(u,v)} \left\{ \int_{\mathcal{X}} u(x) d\mu(x) + \int_{\mathcal{V}} v(y) d\nu(y) \right\}$

Using c-transform, i.e., $v^{c}(x) = \inf_{y \in \mathcal{Y}} \{c(x, y) - v(y)\}, \text{ KDP}$ becomes (Villani, 2008):

$$\operatorname{Cost}(\mu,\nu) = \sup_{v} \left\{ \int_{\mathcal{X}} v^{c}(x) d\mu(x) + \int_{\mathcal{Y}} v^{c}(x) d\mu(x) \right\}$$

• KDP allows optimization over one functional u or v.

Optimal Transport in Generative Models

Figure 3. The pipeline of most prevalent approaches.

- Compute OT maps in latent spaces of autoencoders.
- OT maps are not considered in ambient spaces.
- Lack scalability due to poor expressivity of ICNNs.

Generative Modeling with Optimal Transport Maps

Litu Rout¹ Alexander Korotin² Evgeny Burnaev²

 1 Space Applications Centre (SAC), ISRO 2 Skolkovo Institute of Science and Technology

Proposed Optimal Transport Modeling

$$(y): u(x) + v(y) \le c(x, y) \bigg\},$$

 $v(y)d\nu(y)$

Equal Dimensions of Input and Output

With $\psi(y) \stackrel{\text{def}}{=} \frac{1}{2} ||y||^2 - v(y)$, the *c*-transform of Kantorovich potential v(y) becomes:

$${}^{c}(x) = \inf_{\substack{y \in \mathbb{R}^{D} \\ = \frac{1}{2}}} \left\{ \frac{1}{2} \|x - y\|^{2} - v(y) \right\}$$

$$= \frac{1}{2} \|x\|^{2} - \sup_{\substack{y \in \mathbb{R}^{D} \\ y \in \mathbb{R}^{D}}} \left\{ \langle x, y \rangle - \psi(y) \right\} = \frac{1}{2} \|x\|^{2} - \overline{\psi}(x).$$

$$(1)$$

Substituting (1), KDP simplifies to

$$Constant(\mu,\nu) - \inf_{\psi} \left\{ \sup_{T} \int_{\mathcal{X}} \left\{ \langle x, T(x) \rangle - \psi(T(x)) \right\} d\mu(x) + \int_{\mathcal{Y}} \psi(y) d\nu(y) \right\}$$
(2)

• We prove that the OT map T^* is the solution of the inner maximization problem (2), see Lemma 4.2 in our paper.

Proposed Optimal Transport Modeling

Unequal Dimensions of Input and Output

Figure 4. The scheme of our approach.

$$\inf_{\psi} \sup_{G} \left\{ \int_{\mathcal{X}} \left\{ \langle Q(x), G(x) \rangle - \psi \big(G(x) \big) \right\} d\mu(x) + \int_{\mathcal{Y}} \psi(y) d\nu(y) \right\}$$
(3)

• We prove that the OT map G^* and potential ψ^* are the solutions of the problem (3).

Experimental Results

Generative Modeling: Toy Dataset

International Conference on Learning Representations (ICLR), 2022

Generative Modeling: Qualitative Results

Experimental Results

Generative Modeling: Quantitative Results

Tab	е	1.	F

Model	Related Work	$FID\downarrow$
DCGAN	Radford et al. (2016)	52.0
DRAGAN	Kodali et al. (2017)	42.3
BEGAN	Berthelot et al. (2017)	38.9
NVAE	Vahdat et al. (2020)	13.4
NCP-VAE	Aneja et al. (2020)	5.2
WGAN	Arjovsky et al. (2017)	41.3
WGAN-GP	Gulrajani et al.(2017)	30.0
WGAN-QC	Liu et al. (2019)	12.9
AE-OT	An et al. (2020)	28.6
W2GN+AE	Korotin et al. (2021)	17.2
AE-OT-GAN	An et al. (2020)	7.8
OTM	Ours	6.5

Unpaired Restoration

(a) Noisy

Model	Denoising	Colorization	Inpainting
Input	166.59	32.12	47.65
WGAN-GP	25.49	7.75	16.51
OTM-GP (ours)	10.95	5.66	9.96
OTM (ours)	5.92	5.65	8.13

Project Page: github.com/LituRout/OptimalTransportModeling

Experimental Results

(a) CelebA, 64×64 , RGB, FID: 6.5

Results on CelebA, 64x64 dataset.

Experimental Results

(b) Pushforward

(c) Original