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ABSTRACT

In the recent years, visual object tracking research has undergone significant improve-

ment. The emergence of tracking by detection approach in tracking paradigm has been

quite successful in many ways. Recently, deep Convolutional Neural Networks (CNN)

have been extensively employed in most successful trackers. Yet, the standard approach

has been based on correlation or feature selection with minimal consideration given to

motion consistency. Thus, there is still a need to capture various physical constraints

through motion consistency which will improve accuracy, robustness, and more impor-

tantly rotation adaptiveness. Therefore, one of the major aspects of this research is to

investigate the outcome of rotation adaptiveness in visual object tracking. Also, our re-

search includes various motion consistencies that turn out to be extremely effective in

numerous challenging sequences with substantial improvement relative to deep learning

based trackers: SiameseFC and CFNet.

Moving forward, we study Correlation Filter (CF) trackers, which are one of the most

widely used categories in tracking. Though numerous tracking algorithms based on CFs

are available today, most of them fail to efficiently detect the object in an unconstrained

environment with dynamically changing object appearance. In order to tackle such chal-

lenges, the existing strategies often rely on a particular set of algorithms. Here, we pro-

pose a tracking framework that offers the provision to incorporate illumination and rota-

tion invariance in the standard Discriminative Correlation Filter (DCF) formulation. We

also supervise the detection stage of DCF trackers by eliminating false positives in the

convolution response map. We further demonstrate the impact of displacement consis-

tency on two widely appreciated CF trackers. The generality and efficiency of the pro-

posed framework is illustrated by integrating our contributions into two state-of-the-art

CF trackers: SRDCF and ECO. As per the comprehensive experiments on the VOT2016

dataset, our top trackers show substantial improvement of 14.7% and 6.41% in robust-

ness, 11.4% and 5.27% in Average Expected Overlap (AEO) over the baseline SRDCF
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and ECO, respectively.

Later on, we study the efficacy of temporal regression with Tikhonov regularization

in generic object tracking. Among other major aspects, we propose a different approach

to regress in the temporal domain, based on weighted aggregation of distinctive visual

features and feature prioritization with entropy estimation in a recursive fashion. We

provide a statistics based ensembler approach for integrating the conventionally driven

spatial regression results (such as from ECO), and the proposed temporal regression re-

sults to accomplish better tracking. Further, we exploit the obligatory dependency of

deep architectures on provided visual information, and present an image enhancement

filter that helps to boost the performance on VOT2016 dataset. Our extensive experimen-

tation shows that the proposed weighted aggregation with enhancement filter (WAEF)

tracker outperforms the baseline (ECO) in almost all the challenging categories on pop-

ular OTB50 dataset with a cumulative gain of 14.8%. As per the VOT2016 evaluation,

the proposed framework offers substantial improvement of 19.04% in occlusion, 27.66%

in illumination change, 33.33% in empty, 10% in size change, and 5.28% in average

expected overlap.
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Chapter 1

Introduction

Computer vision research started in the early 1960s as an artificial intelligence problem,

and the goal was to help machines perceive the world through images. The research work

in computer vision based analysis and understanding the motion of a single object in a

sequence of images began around 1970s. David Marr, based on his background in math-

ematics and neuroscience, proposed the theory of computer vision [1] which stated that a

complete geometric reconstruction of the observed scene is required for visual perception.

According to him, a vision system should be able to estimate the shape, color, orientation

etc. of various objects present in the acquired visual inputs, such as images and videos of

a scene. In 1990s researches started migrating from Marr’s theory to another theory called

as active vision theory [2, 3] which actively changes the sensor orientation and location to

obtain additional informations. Active vision deosn’t require a complete representation of

the environment, instead it defines individual visual tracks which operates independently

to perform visual perception. Although active vision related research grew highly during

early 90s, using active sensors for visual perception was not practically feasible.

In late 1990s, due to the advancement of various high speed computers, various

motion-based approaches were developed to solve the computer vision tasks. The objec-

tive of the motion-based approaches was to interpret the sequence of frames (or images)

from videos. Working on a sequence of images added an additional dimension: time and

a new constraint: temporal coherence. Addition of these factors had given a remarkable

development in the research of video processing. One of the important development was

the complete surveillance system which consists of the following components:

• Object detector, which detects the region of interest.

• Object tracker, which estimates the trajectory of the object.

• Object classifier, which classifies the desired object from various classes.



• Activity recognizer, which analyses the activities and behaviours of the tracked

objects.

Additionally, visual object tracking finds applications in diverse fields like traffic mon-

itoring, surveillance systems, human computer interaction etc. Though the same object is

being tracked throughout a given video sequence, the conditions under which the video

is captured may vary due to changes in the environment, object, or camera. Illumination

variations, occlusion, motion blur, object deformations, object rotations etc. are vari-

ous challenges that occur due to changes in aforementioned factors. A good tracking

algorithm should continue tracking a desired object and its performance should remain

unaffected under all these conditions.

Estimating similarity across various image patches is one of the most fundamental

components in the field of object tracking. In most of the cases, a precise similarity

measure leads a solid foundation for several challenging tasks which include structure

from motion, wide baseline matching, object recognition, segmentation, classification

and image retrieval [4]. Although great achievements have been accomplished within

the last few years, there is still a need to optimize the performance in terms of accuracy,

robustness, and speed.

Over the years, many tracking algorithms have been proposed [5] where the main goal

is to localize an object in a series of frames with the sole supervision of a bounding box

given only in the first frame of the sequence. In these scenarios the object’s appearance

model is learnt from previous frame of a sequence online and these learnt models are

then cross-correlated with the search image to localize the target object in the next frame.

There are several state-of-the-art methods based on similarity rationale with certain mod-

ifications such as KCF [6], SRDCF [7] and C-COT [8] which are widely accepted by the

tracking community. Due to the tremendous achievements of deep neural networks in

diverse computer vision applications, the researchers have focused their attention to bring

the best out of deep convolutional nets in tracking paradigm. Moreover, the scarcity of

large sets of supervised data and extremely slow learning ability have made deep trackers

not feasible for real life applications [9]. Even though there is a massive constraint of

speed, deep trackers such as DeepSRDCF [10], TCNN [11] and MDNet [12] have proved
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their effectiveness in wide variety of challenging sequences.

Some of the recent trackers have aimed at learning a detector per video by fine-tuning

multiple layers of a pre-trained deep network with stochastic gradient descent mechanism

[12, 13]. But the necessity of high frames per second in real world applications leaves

the online adaptive deep convolutional networks a step behind the other state-of-the-art

trackers [5, 14]. A possible solution to these shortcomings could be to use a pre-trained

deep similarity network such as Siamese network [15] in order to discriminate the target

from its background. So the objective of the network would be to learn from a single

exemplar image in one branch and predict the essential parameters of the other branch

which will assist in identifying instances of the same object in the upcoming frames [15].

Thus, the deep network would generalize a similarity function from annotated pairs of

raw image patches without attempting to use hand crafted features [16].

Most of the trackers have achieved appealing results both in accuracy and robustness.

It is also witnessed that the use of several consistency techniques such as scale adaptive

KCF [17], influence of windowing [9], bounding box regression [12] and online adapta-

tion of appearance model [12] has turned out to be extremely effective in numerous tough

sequences. Even though the introduction of immunity to minor scale changes has brought

radical advancement, still there is necessity of orienting the bounding box according to

the target object. In real life applications, detecting not only proper bounding boxes but

also estimating the orientation of the target object plays a vital role. This would be a key

factor in increasing overlap ratio and anticipating trajectory of the target object in a more

efficient manner. One of the major advantages of using orientation would be to update

the appearance model and to use more sophisticated features from the rotated version of

cropped exemplar image in the subsequent frames.

Therefore, one of the important aspects of this research is to propose a scheme to

determine the orientation of the target object and analyse its impact in visual object track-

ing. We further extend our work and propose a better approach of updating target position

taking into account the distance and direction of motion and Gaussian weighted average

response map based on various scales. Our proposed method is generic and it can be

integrated with other state-of-the-art trackers which results in substantial improvement in
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the performance standard. To establish this proposition, we have integrated our algorithm

with SiameseFC [9] and CFnet [18]. The main reason behind choosing these two trackers

is that they achieve comparable state-of-the-art performance while operating at extremely

high frames per second. The proposed algorithm have been evaluated on popular tracking

benchmarks such as VOT [5] and OTB [14]. After successfully experimenting our ideas,

namely rotation adaptiveness and motion consistencies on the two aforementioned deep

learning based trackers, we aim at proving the generality of the proposed schemes by in-

tegrating these contributions into the standard discriminative correlation filters, which is

one of the core components in visual object tracking. In contrast to the aforementioned ro-

tation adaptive deep learning based models, this method incoporates rotation adaptiveness

directly in the standard discriminative correlation filters. In the following few paragraphs,

we briefly describe the essence of discriminative correlation filter trackers in generic ob-

ject tracking paradigm.

Most of the existing trackers can be classified as either generative or discriminative

models. The generative trackers [19, 20, 21, 22, 23] use the object information alone

to search for the most probable region in an image that matches the initially specified

target object. On the other hand, the discriminative trackers [24, 25, 26, 27, 28] use

both the object and background information to learn a classifier that discriminates the

object from its background. The discriminative trackers, to a large extent, make use of

Correlation Filters (CF) as classifiers. The main advantage of CFs is that correlation

can be efficiently performed in the Fourier domain as simple multiplication, as proven

by Parseval’s theorem. For this reason, CF trackers are learned and all computations

are performed efficiently in the Fourier domain with drastic reduction in computational

complexity [26]. Thus, the CF trackers have gained popularity in the community because

of their strong discriminative power, which emerges due to implicit inclusion of large

number of negative samples in training.

Despite all the advancements in CF tracking, most of these CF algorithms are still not

robust enough to various tracking challenges. These limitations are due to the inherent

scarcity of robust training features that can be derived from the preceding frames. This

restricts the ability of the learned appearance model to adapt the changes in target ob-

ject. Therefore, we propose rotation adaptiveness and illumination correction schemes in
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order to extract sophisticated features from previous frames that helps in learning robust

appearance model and filter parameters. The rotation adaptiveness, up to some extent,

tackles the issues of object deformation due to the robustness in representation.

In spite of the effort devoted by a large part of the community, there are still several

challenges yet to be conquered. To overcome such challenges, most of the previously

proposed trackers focus on some of the key components in tracking, including robust

feature extraction for learning better representation [29, 30, 31, 32], accurate scale esti-

mation [33], rotation adaptiveness [34, 35], motion models [36] etc. There are several

other state-of-the-art trackers such as SRDCF [7], and CCOT [8] that implement addi-

tional constraint on the residual sum of errors to enforce higher degree of smoothness

on the physical movement of the object. In the pursuit of accurate tracking, some of

the proposed frameworks [32, 37] are predominantly attributed by sophisticated features

and complex models. Further, the emergence of deep CNN has replaced the low-level

hand-crafted features which are not robust enough to discriminate significant appearance

changes. The success of deep learning based trackers such as MDNet [12] and TCNN [11]

on popular tracking benchmarks such as OTB [14] and VOT [5] is a clear indication of

the distinctive feature extraction ability of deep CNN. In spite of the popularity, these fea-

ture extractors still lack high quality visual inputs that can further boost the performance.

Therefore, one of the major aspects of this thesis is to study the effect of enhancing visual

inputs prior to feature extraction. In some sequences like Matrix (Figure 1.1), the hand-

crafted and CNN features, as used in ECO, also fail to track the target, whereas image

enhancement leads to sophisticated feature extraction that helps in tracking under such

conditions.

Though deep learning based models have gained a lot of attention on account of their

accuracy and robustness, the inherent scarcity of data, and required time for training these

networks online, leave such models a step behind the correlation filter (CF) trackers. For

this reason, a proper synthesis of CNN as feature extractor, and CF as detector has been

doing exceedingly well in most of the challenging sequences. However, most of these

fusion based trackers[8, 38], being supervised regressors, learns to maximize the spatial

correlation between target and candidate image patches. Due to spatial regularization, as

in SRDCF [7], such trackers are capable of searching in a large spatial region that pro-
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Figure 1.1: The groundtruth of Matrix sequence of VOT2016 is shown in blue. The ECO
(green) tracker fails to track the object because of drastic appearance changes. However,
our ECO_EF (red) can handle the abrupt transition in appearance, mainly due to the
enhanced visual information provided before feature extraction, and tracks successfully.

duces a significant gain in performance. But, these classifiers give minimal consideration

to regress in temporal domain. Therefore, we exploit the temporal regression (TR) ability

of a simple, yet effective model considering weighted aggregation of preceding features.

1.1 Objective of the Thesis

One of the major aspects of this thesis is to study comprehensively visual object tracking

in the real world scenarios. We critically analyze various state-of-the-art trackers, and

identify their shortcomings. Thereafter, we intend to augment these state-of-the-art track-

ers with our own contributions to tackle the identified issues efficiently. Thus, we aim

at contributing in the expansion of tracking research with extenssive experimentation and

compelling inferences. In the process of our research, we have identified few issues in the

current state-of-the-art trackers and contributed in those areas focusing on relative gain in

overall performance. Our contributions are summarized below.
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1.2 Contributions of the Thesis

With respect to deep learning based trackers: SiameseFC [9] and CFNet [18], our contri-

butions are summarized as following:

• At the beginning, we study the existing centroid update strategy, and propose an

aproach to enhance the degree of smoothness on physically varying movement vari-

ables, such as speed and angular displacement (Section 3.2.3).

• Further, we propose to exploit the scale invariant features in determining the ob-

ject’s location, which is based on Gaussian weighted average response of the scale

pyramid (Section 3.2.4).

• Thereafter, we explore the rotation adaptiveness in Siamese architecture, and pro-

pose to augment various rotations in determining the centroid location as well as

orientation efficiently in the next frame (Section 3.2.5).

The major contributions of our research with correlation filter based trackers: SRDCF [7]

and ECO [38] are as follows:

• An Illumination Correction filter (IC) (Section 3.3.1) is introduced in the tracking

framework that eliminates the adverse effects of variable illuminations on feature

extraction.

• We propose an approach to incorporate rotation adaptiveness (Section 3.3.3) in stan-

dard DCF by eliminating false positives (Section 3.3.3.3) and optimizing the orien-

tation (Section 3.3.3.4) of the target object in the detector stage. The orientation

optimization helps in extracting robust features from properly oriented bounding

boxes unlike most state-of-the-art trackers that rely on axis aligned bounding boxes.

• Building on it, we supervise the sub-grid localization cost function (Section 3.3.3.5)

in the detector stage of DCF trackers. This cost function is intended to maximize

the ratio of response score and euclidean distance between target centroids from

immediate past frame and test frame.
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• Further, we show the impact of imposing higher degree of smoothness (Section 3.3.4)

on two popular CF trackers, namely Spatially Regularized Disriminative Correla-

tion Filters (SRDCF) [7], and Efficient Convolution Operators (ECO) [38].

The proposed technical and theoretical contributions with respect to Temporal Regression

(TR) are summarized as following:

• A simple and effective enhancement filter (EF) (Section 3.4.2) is proposed to al-

leviate the adverse conditions in visual inputs prior to feature extraction. By this

approach, the proposed tracker is able to perform against the state-of-the-art on

VOT2016 dataset with an improvement of 5.2% in Average Expected Overlap (AEO)

over the baseline approach.

• Although a lot of methods have been developed based on spatial regression, TR still

remains a relatively less explored method in tracking. Therefore, in this thesis, a de-

tailed analysis on impacts of employing TR in single object tracking is undertaken

(Section 3.4.3).

• For efficient learning of TR parameters, a weighted aggregation (Section 3.4.3.1)

based approach is proposed to suppress the dominance of un-correlated frames

while regressing in temporal domain. Also, the training features are further or-

ganised based on average information content (Section 3.4.3.2). To our knowledge,

this is in contrast to the conventional linear regressions in which equal [6], or more

preference [18] is given to the historic frames. In order to generalize better, and con-

trol over-fitting in temporal domain, we have embedded the whole TR framework

in Tikhonov regularization (Section 3.4.3.3).

Though we have demonstrated the importance of contributions through integrating

with SiameseFC, CFNet, SRDCF, and ECO, the proposed framework is generic, and can

be well integrated with other trackers to tackle some of the aforementioned tracking chal-

lenges with certain improvement in accuracy.
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1.3 Thesis Overview

In this thesis, we have consolidated our contributions in various state-of-the-art trackers

aiming at advancement in generic object tracking research. The thesis is structured in a

sequential approach based on our contributions. At first we explore the weaknesses of

top performing trackers on popular benchmarks, and analyze the efficacy of our contribu-

tions in those models. After verifying that the proposed contributions perform favourably

on numerous challenging sequences, we incorporate these contributions in the standard

discriminative correlation filter based trackers, which are the widely appreciated tracking

frameworks in the vision community. Thus, we propose a generic framework to eradicate

several tracking issues to a great extent. Thereafter, we augment temporal correspondence

with these spatial-domain correlation filter trackers in order to boost the overall tracking

performance. For unbiased assessment of our trackers, we have used toolkits provided by

various tracking benchmarks for comprehensive evaluation, and draw compelling infer-

ences from the obtained results. To assess the genericness of the proposed contributions,

we evaluate the trackers on diverse benchmarks, and show considerable gain in the corre-

sponding evaluation metrics.
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Chapter 2

Visual Object Tracking

2.1 Object Tracking : State-of-the-art

Object tracking helps us to understand and describe the object behaviour by replacing the

traditional method of monitoring computer by human operators. Every tracking algorithm

requires an object detection mechanism either in every frame or when the object first

appears in the video. Numerous approaches have been proposed for tracking, however,

approaches differ from each other due to various factors such as:

• which object representation is suitable for tracking

• which image feature should be used for tracking

• how to model the motion, appearance and shape of the object

The solution to the above problems depends on the environment in which tracking is

performed and also application of the tracking.

2.1.1 Representation of Object in Tracking

Inorder to track any object, it can be represented in various forms as discussed below.

• Point: The object can be represented using a single point e.g., centroid as shown

in Figure 2.1(a). This is used mainly when the object to be tracked occupies very

small region in the image.

• Primitive geometric shapes: The object can also be represented using a rectangle

as in Figure 2.1(b) or an ellipse as in Figure 2.1(c). These are mostly suitable for

representing simple rigid objects however, it can be used for tracking a variety of

non-rigid objects also.



Figure 2.1: Object representations [39] : (a) Centroid (b) Rectangular (c) Elliptical (d)
Object contour (e) Control points on the contour

• Object contour: The contour represents the boundary of the objects and are used

for representing non-rigid objects as shown in Figure 2.1(d,e). These are mainly

used for complex non-rigid shapes. The region inside the contour is called as sil-

houettes.

• Articulated shape models: Articulated object refers to the object parts that are

held with joints. Human body is an articulated object with legs, hands, head, torso

and feet fully connected by joints. The relation between these parts are governed by

different model parameters like joint angle. To represent each part of the articulated

model, we can use lines, ellipse or cylinders as shown in Figure 2.1(f) . Some of

the articulated object tracking techniques are discussed in [40], [41], [42].

Based on the appearance, some of the object representations are as below,

• Probability densities of object appearance: The probability density of the object

can be a gaussian model, gaussian mixture model, or non-parametric like parzen

windows or histograms.
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• Templates: Template model can be created using the basic shape of geometry or

object silhouettes. The disadvantage of template model is that it considers only

one view of the object and hence it is only suitable for tracking objects whose pose

doesn’t vary.

• Multi-view appearance model: It considers different views of the object by a

subspace decomposition like Eigenspace decomposition or by training a classifier

like Support Vector Machine. The major disadvantage of this is that the appearance

information of all view of the object should be known priorly.

2.1.2 Feature Selection for Tracking

All tracking algorithms require a set of unique features to represent the object. Selection

of features play an important role in the tracking process because few of the features are

not stable with various tracking challenges like occlusion, scale, illumination variations

etc. Feature selection also depends on object representation i.e., for histogram based

appearance, color is used as the feature whereas for contour based representations object

edges are usually used as the feature. However, some of the tracking algorithms uses

combination of various features to improve its performances. Few of the visual features

are as discussed below,

• Color: It mainly depends on two factors, (i) spectral power distribution of the

illuminant and (ii) surface reflectance property of the object. Though color spaces

are highly sensitive to noises, it is one of the mostly used features.

• Edges: Object boundaries have high difference in image intensities and hence are

another important feature for tracking. It is independent of illumination variation

and hence is a better option as compared to that of color features.

• Optical Flow: It defines the displacement vector corresponding to the translation of

each pixel in an image. It is mostly used as a feature in motion based segmentation

and tracking applications.

• Texture: It refers to the intensity variation of a surface which defines properties
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like smoothness and regularity. Unlike the color feature which is obtained directly

from the image, texture feature requires a processing step to generate the descriptor

to define the target.

Mostly the selection of features depend on the application of the tracking. Other com-

monly used features include Histogram of Oriented Gradients (HOG), color-name etc.

2.1.3 Challenges in Tracking

Detection of object can be a challenging task as the object can have complicated structure,

or it may change in size, shape, location and orientation over the subsequent frames.

Currently a large number of tracking algorithms are available, however most of these may

contain error that will drift the object of interest. Better the tracking algorithm, lesser will

be the drift. Few of the major tracking challenges include:

• Clutter: During tracking of the object, sometimes the background may be cluttered

or may be surrounded by other objects as shown in Figure 2.2. This make estimation

of target a difficult task.

Figure 2.2: Background clutter

• Illumination Variation: The object to be tracked may be exposed to various back-

ground illuminations as shown in Figure 2.3. By keeping the local background

along with the model, we can overcome this challenge.
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Figure 2.3: Illumination variation

• Occlusion: In a video, if the target object falls behind another object in the current

image, then the target is said to be occluded as shown in Figure 2.4.

Figure 2.4: Occlusion

• Scale Variation: Size of the object changes due to the zooming in and out of cam-

era as illustrated in Figure 2.5.

• Shape: Shape of the object may vary along the video as shown in Figure 2.6.

15



Figure 2.5: Scale Change

Figure 2.6: Shape

• Motion Blur: Due to motion of the target or camera, object may appear to be

blurred as shown in Figure 2.7. The appearance model of the tracking algorithm

may get highly affected due to this tracking challenge.

2.1.4 Tracking Applications

• Automated Surveillance: It is a task monitoring scene to capture the suspicious

activities as show in Figure 2.8. It can be used to acquire obstacle avoidance capa-

bilities in case of robot navigation.

• Human Computer Interaction (HCI): It is used as a gesture recognition, eye gaze

tracking for data inputs to computers as shown in Figure 2.9. Using a robust tracker,
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Figure 2.7: Motion Blur

Figure 2.8: Automated Surveillance

the user can interact with the system based on gestures.

Figure 2.9: Human Computer Interaction (HCI)
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• Traffic Monitoring: It involves real-time capturing of various details like number

plates of vehicle passing, speed at which they are travelling, with the help of which

one can direct the traffic flow as shown in Figure 2.10.

Figure 2.10: Traffic Monitoring

• Autonomous Vehicles: In autonomous vehicle design, as shown in Figure 2.11,

some of key components are detection, segementation, and trajectory estimation of

several objects nearby. The emergence of high commercial demands has played an

important role in the rapid progress of visual object tracking.

Figure 2.11: View of a driverless car
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2.2 Literature Review

Most of the correlation filter based algorithms are based on two key elements, how the

target object is represented and how to localize this object of interest in the subsequent

frames. Object representation models have developed gradually from histogram [43]

based approach to more advanced generative [44, 45] or discriminative [6, 46] approaches.

For target object localization, methods such as Elliptical head tracking [47], Probabilistic

color and adaptive multi-feature tracking [48], Robust visual tracking [49] and Learn-

ing to track with multiple observers [50] have gained a lot of attention. Recently, the

widespread success of object detection algorithm has emerged an advanced approach of

localization, known as tracking-by-detection. Due to outstanding performance of these

tracking-by-detection algorithms on evaluation benchmarks [5, 14], this paradigm has

gained popularity in the tracking community. This method usually employ binary classi-

fier to discriminate target object from its background. S. Hare et al. discuss Struck [51], a

discriminative tracker which employs a kernelized structured output Support Vector Ma-

chine(SVM) to provide adaptive tracking. M. Danelljan et al. have proposed SRDCF [7]

which uses a spatially regularized correlation filter that helps in learning from a large set

of negative samples, without corrupting the positive samples. Y. Li et al. have proposed

a scale adaptive scheme in [17] which has strong impact on determining the size of the

target efficiently. G. Koch et al. explores a method to train Siamese neural network which

ranks the similarity between its input image patches [52]. J. Valmadre et al. take a step

forward to investigate the influence of modified Alex-net on Siamese network [9] and

propose an end-end training model of correlation filter in CFnet [18].

Sequence like glove [5] from VOT challenge as shown in Figure 2.12 undergoes severe

deformation which leads to significant changes in aspect ratio as well as rotation of the

bounding box. Due to this, the ill-equipped axis aligned bounding box used in most state-

of-the-art tracking methods fails to capture more detailed information from the object of

interest. Y. Hua et al. [53] have addressed this issue by generating suitable candidates

which capture more detailed information by estimating the transformations undergone by

the object. H. A. Rowley et al. have carried out an extensive research in designing a

rotation invariant neural network based face detection system [54]. There are several face
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Figure 2.12: Sample frames from glove sequence regarded as one of the toughest se-
quences according to VOT 2016 results [5]. First column indicates the ground truth
bounding box in the first frame. Our modified SiameseFC(red) successfully tracks the
geometric deformations unlike original SiameseFC[9](yellow).

detection systems which could only detect upright or frontal faces [55]. But this is far

from the reality where images of faces could be much more complicated than just upright

or frontal. Introduction of router network in [54] to detect angle of orientation of the

face has helped to convert the rotated faces back to frontal before it is passed through the

face detector. M. Jaderberg et al. have introduced a spatial transformer network (STN)

[56], where the model learns invariance to rotation, scale, translation and other warping

of the input data. Use of localization network, sampling grid generator and sampler in a

STN have brought radical achievement in challenging object classification datasets such

as CUB-200-2011 birds dataset [57]. In this thesis, we explore extensively the impact of

rotation invariance in tracking paradigm as well as several new consistency techniques

which have outperformed the original tracking algorithm by a large margin.

Numerous variants of the basic CF tracker have been proposed by adding constraints

to the basic filter design and by utilizing different feature representations of the target

object. Initial extensions start with the KCF tracker [26] which uses a kernel trick to

perform efficient computations in the Fourier domain. The Structural CF tracker [27]

uses a part based technique in which each part of the object is independently tracked

using separate CFs. Danelljan et al. [28] proposed the SRDCF tracker which uses a
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spatial regularizer to weigh the CF coefficients in order to emphasize the target locations

and suppress the background information. Thus, the SRDCF tracker includes a larger set

of negative patches in training, leading to a much better discriminative model.

The earlier trackers directly used the image intensities to represent the target object.

Later on, feature representations such as color transformations [58, 59, 60, 26], Color-

names [37] etc. were used in the basic CF trackers. Due to the significant advancement

of deep neural networks in object detection and recognition tasks, features from these

networks have also found applications in visual tracking, giving rise to substantial im-

provement in performance. The deep trackers, such as DeepSRDCF [10], MDNet [12],

and TCNN [11], clearly indicates the distinctive feature extraction ability of deep net-

works. The HCF tracker [61] exploits both semantic and fine-grained details learned

from a pre-trained Convolutional Neural Network (CNN). It uses a multi-level correlation

map to locate the target object. The CCOT tracker [8] uses DeepSRDCF [10] as the base-

line tracker and incorporates an interpolation technique to learn the filter in continuous

domain with multi-resolution feature maps. The ECO tracker [38] reduces the compu-

tational costs of CCOT by using a factorized convolution operator that acts as a dimen-

sionality reduction operator. ECO also updates the features and filters after a predefined

number of frames, instead of updating after each frame. This eliminates redundancy and

over-fitting to recently observed samples. As a result, the deep feature based ECO tracker

does reasonably well on diverse datasets outperforming the other CF trackers by a large

margin.

Among rotation adaptive tracking, Zhang et al. [62] propose an exhaustive template

search in joint scale and spatial space to determine the target location, and learn a rotation

template by transforming the training samples to Log-Polar domain. We learn rotation

adaptive filter in the cartesian domain by incorporating orientation in the standard DCF.

In contrast to a recent rotation adaptive scheme, as proposed by Rout et al. [35], we

incorporate rotation adaptiveness directly in the standard DCF formulation, by performing

a pseudo optimization on a coarse grid in the orientation space. Qianyun et al. [63] use

a multi-oriented Circulant Structure with Kernel (CSK) tracker to get multiple translation

models each dominating one orientation. Each translation model is built upon the KCF

tracker. The model with highest response is picked to estimate the object’s location. The
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main difference is that we do not learn multiple translation models at various orientations,

as proposed in multi-oriented CSK. In contrast, we optimize the total energy content in

convolution responses at the detector stage with respect to object’s orientation. The multi-

channel correlation filter is then learned from a set of training samples which are properly

oriented in a deterministic approach. Note that, our training process requires a single

model.

There are many recently proposed tracking algorithms that offer superior performance

on the VOT2017 public as well as sequestered dataset [5]. The LSART tracker [64] com-

plements the kernelized ridge regression technique with CNN. It also combines the deep

features with handcrafted features. The CFWCR tracker [65] extends the ECO tracker

based on a continuous convolution operator and uses weighted convolution responses of

the CNN features. CSR-DCF [66] improves the DCF trackers using spatial and channel

reliability concepts using HOG and colornames as features.

Correlation Filter (CF) based trackers have gained a lot of attention due to their low

computational cost, high accuracy, and robustness. The regression of circularly shifted

input features with a Gaussian kernel makes it plausible for implementation in Fourier

domain, which in fact is the predominant cause of low computational cost. The object

representation models, as adapted by many such trackers, have emerged gradually with

colour attributes [31], HOG [67], SIFT [32], sparse based[29], CNN [8], and hierarchical

CNN [61]. These methods have assisted in diminishing the adverse effects of ill-posed

visual inputs. As discussed in this thesis, our proposed enhancement filter, in a loose

sense, contributes towards alleviating this issue further by pre-processing the inputs prior

to feature extraction.

Among spatio-temporal models, the Spatio-Temporal context model based Tracker

(STT) [68] proposes a temporal appearance model that captures historical appearances

to prevent the tracker from drifting into the background. Also, STT proposes a spatial

appearance model that creates a supporting field which gives much more information

than the appearance of the target, and thus, ensures robust tracking. The Recurrently

Target-attending Tracker (RTT) [69] exploits the essential components of the target in

the long-range contextual cues with the help of a Recurrent Neural Network (RNN). The
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close form solution used in RTT is computationally less intensive, and more importantly,

it helps in mitigating occlusion cases upto a great extent. The deep architecture proposed

in [70] consists of three networks: a Feature Net, a Temporal Net, and a Spatial Net which

assist in learning better representation model, establishing temporal correspondence, and

refining the tracking state, respectively. The Context Tracker [71] explores the context

on-the-fly by a sequential randomized forest, an online template based appearance model,

and local features. The distracters and supporters, as proposed in Context Tracker, are

very much useful in verifying genuine targets in case of resumption. The TRIC-track [72]

algorithm uses incrementally learned cascaded regression to directly predict the displace-

ment between local image patches and part locations. The Local Evidence Aggregation

[73], as per the discussion in TRIC-track, determines the confidence level which is used

to update the model. The Recurrent YOLO (ROLO) [74] tracker studies the regression

ability of RNN in temporal domain.

In a nutshell, most of the trackers try to incorporate temporal information through

complicated learning strategies often leading to low performance and high time complex-

ity. On the contrary, we intend to use a simple, yet effective weighted aggregation and

feature prioritization strategy while regressing in the temporal domain. Our comprehen-

sive experimentation indicates that the closed-form solution of TR, as proposed in this

thesis, can capture temporal correspondence very effectively without hampering the time

complexity much.
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Chapter 3

Proposed Methodology

3.1 Introduction

Here, we elaborate our contributions with appropritate justification of each individual

component. We begin our description with the contributions made in deep learning based

trackers (Section 3.2), followed by discriminatative correlation filters (Section 3.3), and

finally, weighted aggregation with enhancement filter (Section 3.4).

3.2 Contributions in Deep Learning based Trackers

In this section, we detail our contributions by proposing a generic approach for incorpo-

rating rotation invariance (RI) in object tracking and introducing the motion consistencies

guided by the laws governing physical motion of the objects. For the sake of experi-

mentation and analysis we incorporated the proposed modifications to Siamese Net and

CFnet. Here we first briefly discuss about the architecture of SiameseFC in Section 3.2.1

and CFnet in Section 3.2.2 followed by the consistencies termed as Displacement Consis-

tency in Section 3.2.3, Scale Consistency in Section 3.2.4, and RI in Section 3.2.5.

3.2.1 Siamese Fully Convolutional Network

Deep similarity learner mainly learns the parameters of a function f(z, x) which takes two

images as input and generates a response score. If the two images depict the same object,

it generates a high score otherwise a low score. A convolutional neural net is used as

this learning function f(z, x). Typically Siamese architectures have been quite success-

ful in deep similarity measure. The network learns the parameters from the first frame

of each sequence and then all the possible candidates are tested exhaustively to measure



similarity with the exemplar image. A simple architecture of Siamese fully convolutional

network is shown in Figure 3.1. In this architecture, the appearance model of the exem-

plar image isn’t updated at all. Siamese network employs same transformation φ which

is a five layered CNN to both of its inputs z and x. The transformed inputs φ(z) and φ(x)

are cross-correlated to obtain a response map. The location of maximum response score

indicates the position of the object of interest. Thus, the overall similarity function be-

comes f(z, x) = g(φ(z), φ(x)). One of the major advantages of using fully convolutional

architecture is that, a larger search region can be fed into the network without resizing it

to the size of exemplar. Then the similarity function helps in finding the response score at

all translated sub-windows in a large search region. The response map computed by this

architecture is given by equation (3.1).

f(z, x) = φ(z) ∗ φ(x) + b (3.1)

where b εR is a bias signal.

Figure 3.1: Siamese Fully Convolutional Network. z-branch and X-branch are known
as exemplar and instance branch respectively. Z is the target exemplar image extracted
from the first frame. Siamese network learns from the sole supervision of Z which is
done once per sequence. X is the instance image. Output response map predicts the
possible target location based on the highest response score [9].

A very detailed description of Siamese architecture along with mathematical discus-

sion can be found in [9, 4].
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Figure 3.2: Correlation filter network. An additional correlation filter block in exemplar
branch brings robustness to translation. End-to-end training model of a correlation filter
which uses CNN features [18].

3.2.2 Correlation Filter Network

Correlation filter network(CFnet) is a modification over baseline Siamese network as

given in equation (3.1). The CFnet architecture is shown in Figure 3.2. The new sim-

ilarity measure function is given in equation (3.2).

h(z, x) = sW (φ(z)) ∗ φ(x) + b (3.2)

where s and b are scale and bias respectively. The correlation filter block W (x) uses

feature map φ(z) to learn a template by solving ridge regression problem in the Fourier

domain [6]. The effect of circular boundaries has been mitigated by multiplying φ(z) with

a cosine window and cropping the final template. Unlike SiameseFC, the appearance

model in CFnet is updated after each frame using a rolling average in order to avoid

abrupt transitions from frame to frame. The rest of the procedure is similar to that of the

baseline Siamese as illustrated in Section 3.2.1. A deep insight into CFnet including back

propagation can be found in [18].

3.2.3 Displacement Consistency

In order to avoid the target position deviating much from its previous position, most track-

ers [9, 18] employ a target centroid update strategy as shown in Figure 3.3. Mathemati-

cally, this update strategy can be written as in equation (3.3). This is usually employed to
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Figure 3.3: Conventional target centroid update strategy. Let [X1, Y1] and [X2, Y2] repre-
sent the target centroids in the first and second frame respectively. Let [X3, Y3] represent
the predicted centroid in the third frame. Let [X3c, Y3c] represents the updated centroid
in the third frame. Let δ represents the angular deviation occurred due to conventional
centroid update.

enforce smoothness on the object motion. However, we identify that this is not sufficient

to enforce the smoothness on the displacement (direction and distance) of the object in

motion which can contribute to more reliable tracking. This can be noticed by observing

the Figure 3.9. Due to the incremental angular deviation δ, the target centroid keeps drift-

ing away from the actual centroid which decreases the overlap ratio. It is observed from

Table 5.1 that minimizing this deviation δ as proposed has increased the success as well

as precision.

[X3c, Y3c] = w × [X2, Y2] + (1− w)× [X3, Y3] (3.3)

We have integrated a new displacement consistency approach on top of the conventional

approach to enhance the degree of smoothness. The angle consistency is illustrated in

Figure 3.4. In distance consistency, the algorithm remembers the previous distance en-

countered and updates the new distance using rolling average. A pictorial representation

of distance consistency is elucidated in Figure 3.5. After displacement consistency, the

new centroid of the target is computed using equation (3.6). The accuracy and robustness

after these integrations along with original values have been provided in Section 5 which

proves the efficacy of the scheme.

θ1n = wθ × θ0 + (1− wθ)× θ1 (3.4)
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Figure 3.4: Angle consistency. Let θ1 represents the angle of the centroid in the third
frame with respect to the centroid in the second frame. Let θ0 represents the angle of
the centroid in the second frame with respect to the first. Let θ1n represents the updated
angle in the third frame. Let [X3a, Y3a] represents the new updated centroid by using
equation (3.4) with 1% weight given to previous angle i.e. wθ = 0.01.

d1n = wd × d0 + (1− wd)× d1 (3.5)

[X3n, Y3n] = [X2, Y2] + d1n∠θ1n (3.6)

3.2.4 Scale Consistency

The conventional approach to estimate size of the target object is to form a scale pyramid

and compute response map using each of these images [17]. The corresponding scale of

the response map having maximum response score among all these response maps deter-

mines the size of the target object. Then that particular response map is used for obtaining

the target centroid. In this standard approach, only the winning response map i.e the map

having maximum response score among all maps decides the size of the object. However,

as we know that in real scenarios, the scale of the object doesn’t undergo drastic change

from frame to frame as the scale change depends on the distance of the object from cam-

era and as the objects move smoothly in many real scenarios. Though there are methods

which add a penalty factor to the new target size, this applies only to the size of the target

object. However, if the position of the target centroid itself is corrupted due to the use of

wining response map only, it will persist in subsequent frames. In this standard scenario,
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Figure 3.5: Distance consistency. Let d0 represents the distance of centroid from frame
1 to 2. Let d1 represents the distance from frame 2 to 3 after angle consistency. Let
d1n represents the updated distance obtained by using equation (3.5) with 1% preference
given to previous distance i.e. wd = 0.01. Let [X3n, Y3n] represents the final position of
the centroid after Displacement consistency.

the response maps that correspond to different scales aren’t used in determining the cen-

troid. Therefore, we propose to use Gaussian weighted average response map centred at

the winning map and have variance as an additional hyper parameter. In this way we can

incorporate the response maps that correspond to various scales in the scale pyramid. Our

approach has enhanced the accuracy as well as robustness of the considered base trackers.

The results of this experiment are described in details in Section 5. The pseudo code for

Gaussian weighted average response map is provided in the following algorithm.

Algorithm: Scale Consistency using Gaussian weights

1. Input parameters : Let responseMaps represents the stack of response maps at

each scale. µ represents the index of the winning response map. σscale represents

the standard deviation of Gaussian weights. scaleBins numerically represents each

scale i.e. scaleBins(1) represents the first scale, scaleBins(2) represents the second

scale and so on. Let N represents the total number of scales used in the scale

pyramid.

2. Computation of scale weights and updation of responseMap:
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(a) Define weights for each scale as

scaleWeights = 1√
2×π×σscale

exp
−( scaleBins−µ

σscale
)2

(b) responseMap =∑N
i=1[responseMaps(i)× scaleWeights(i)]

3. Output response map : The output of this algorithm is the Gaussian weighted

average responseMap.

3.2.5 Rotation Invariance

In this Section 3.2.5, we will discuss two different ways of incorporating rotation adap-

tiveness in tracking algorithms such as the proposed rotation invariant SiameseFC 3.2.5.1

and rotation invariant CFnet 3.2.5.2. The former can be used where the target object is

not updated after each frame and the later can be used where the object is updated after

each frame.

Figure 3.6: Sample frames from fish1 sequence denoted as one of the toughest sequences
according to VOT 2016 results [5]. First column indicates the ground truth bounding
box in the first frame. Our modified SiameseFC(red) successfully tracks the geometric
deformations unlike original SiameseFC [9](yellow).
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3.2.5.1 Rotation Invariant SiameseFC

When an object is in motion it can assume any of its rotated form or view from frame

to frame. However, conventionally only a base template with a fixed (zero) orientation

is employed to find the similarity. To incorporate robust RI tracking, we propose to aug-

ment various possible rotated images of the object and measure similarity with all these

rotated images. The working of rotation invariant Siamese fully convolutional network

has been illustrated in Figure 3.7. Since the appearance model isn’t updated during track-

ing, the corresponding features of rotated exemplar can be extracted once for a sequence.

Since the angle of rotation does not change drastically from frame to frame, only 5 near-

est neighbour response maps are used in computing response map. The mean of the

Gaussian weights is considered as the index of the winning response map and variance

is tuned as an additional hyper-parameter in the similar manner as explained for different

scales in Section 3.2.4. In order to avoid false alarm, we have computed three Gaussian

weighted average response maps centred at top three maps according to their response

scores. Accordingly there would be three most probable target centroids, out of which

the final centroid is selected based on the highest score to displacement ratio in a sense

that the object wouldn’t have travelled far from its previous location. In this approach, as

the path with dominant direction is detected, the bounding box can be rotated accordingly

to increase the overlap ratio. A comparison between SiameseFC and rotation invariant

SiameseFC is shown in Figure 3.6. We have evaluated our rotation invariant SiameseFC

on VOT datasets [5] and the obtained results are provided in Section 5.

3.2.5.2 Rotation Invariant CFnet

Unlike rotation invariant SiameseFC, in rotation invariant CFnet the exemplar is updated

after every frame [18]. In the second frame the object itself would have undergone some

rotation. So there is no need to extract features from all the rotated exemplars before-

hand, instead only forward and backward rotations after each model update would suffice.

Therefore, there is no need to feed the angle of rotation back. Thus, there would be three

response maps corresponding to each of the three rotations. Since we have only three

response maps corresponding to three nearest neighbour angles and each response map
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Figure 3.7: Rotation Invariant Siamese Fully Convolutional Network. The conventional
SiameseFC extracts features for cropped exemplar, instead exemplar image can be ro-
tated uniformly from -180◦ to 180◦ at an interval of θ and corresponding features can be
extracted. Here, θ = 20◦. So there would be 19 feature maps instead of only one. As-
sume initial newAngle to be 0◦. 5-NN FM block passes 5 nearest neighbour feature maps
based on the new angle of rotation. Let S-Corr and D-Corr blocks represent scale Sec-
tion 3.2.4 and displacement Section 3.2.3 corrections respectively. GWA block computes
Gaussian weighted average response map centred at top 3 maximum score response maps
Section 3.2.4. Decision block computes the ratio of maximum score i.e. probability of
detection and the corresponding distance from the previous location. The maximum ratio
determines the final target centroid and the new angle of rotation which is determined as
the angle corresponding to maximum ratio.

itself is a Gaussian weighted average map performed by the S-Corr block, there is no need

to compute average of the three rotated maps again. The final centroid is computed by

using the map having highest response score among all the three. In fact, using Gaussian

weighted average after scale correction doesn’t seem to improve the performance much,

though it would be useful when more nearest neighbour rotated exemplars are used. This

is a general approach which can be integrated into any state-of-the-art trackers to enhance

their performance further. The rotation invariant CFnet is illustrated in Figure 3.8. The

results of our proposed CFnet DS and CFnet DSR can be found in Section 5. In rest of

the sections, we have referred CFnet-conv2 [18] as original CFnet and applied our con-

sistency strategy to this model. We have used CFnet-conv2 in our experiments because

it has less than 4% parameters used in five-layer baseline and outperforms the rest in the

series [18].
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Figure 3.8: Rotation Invariant Correlation filter network. The input exemplar image is
rotated by θ = [-ζ, 0◦, +ζ]. Here, ζ = 10◦ represents the angle of rotation of the exemplar.
The angle of rotation 0◦ represents the actual cropped exemplar image obtained after each
iteration. Thus, the three feature maps of rotated exemplar are correlated with the feature
map of instance image which produce three most probable response maps. Let S-Corr
and D-Corr blocks represent scale Section 3.2.4 and displacement Section 3.2.3 correc-
tions respectively. The S-Corr block performs scale correction on these three response
maps. The GWA block computes Gaussian weighted average response map centred at
the winning response map. The D-Corr block performs displacement correction and
computes the final target centroid.

3.3 Contributions in Correlation Filter based Trackers

3.3.1 Illumination Correction (IC) Filter

Illumination changes occur in a video due to dynamically changing environmental con-

ditions, such as waving tree branches, low contrast regions, shadows of other objects,

changes in object orientation relative to light sources etc. This variable illumination gives

rise to low frequency interference, which is one of the prominent causes of disturbing the

object’s appearance. As the appearance of an object changes dramatically under different

lighting conditions, the learned model fails to detect the object, leading to reduction in

accuracy and robustness. Also, we may sometimes be interested in high frequency vari-

ations, such as edges, which are part of the dominant features in representing an object.

Though these issues are investigated extensively in image processing community, to our

knowledge, necessary attention for the same is not paid explicitly, even in the state-of-the-

art trackers. Therefore, we intend to introduce Illumination Correction filter (IC) in the

tracking paradigm in order to tackle the aforementioned issues up to some degree. At first,

we employ a standard contrast stretching mechanism [75] to adjust the intensities of each
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Figure 3.9: Sample frames from Bird1 sequence, one of the toughest sequences in
OTB50 [14]. The results are obtained using fully integrated OTB toolkit. Our track-
ers have not deviated much from the target centroid mainly due to the integration of
displacement correction.

frame. The contrast stretched image is then subjected to unsharp masking [75], a popular

image enhancement technique in order to suppress the low frequency interference, and

enhance high variations. To our surprise, the performance of the baseline trackers im-

proves by a considerable amount just by enhancing the input images, as can be inferred

from experimental results (Section 5). This validates the fact that the robust feature ex-

tractors still lack high quality visual inputs, which otherwise can lead to substantial gain

in performance. To qualitatively assess the impact of IC, we have visualized the results of

SRDCF and I-SRDCF in Figure 3.10.

Figure 3.10: Sample frames from the sequence sphere of VOT2016 [5]. The blue, green,
and red rectangle shows the groundtruth, SRDCF, and I-SRDCF (with IC) outputs, re-
spectively.
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3.3.2 Standard SRDCF Training and Detection

For the ease of disntinguishing and clearly understanding our contributions, we have used

identical notations as in SRDCF [28]. In the standard DCF formulation, a multi-channel

correlation filter f is learned from a set of training samples {(xk, yk)}tk=1. Each training

sample xk has a d-dimensional feature map, which is extracted from an image region.

All the samples are assumed to be of identical spatial resolution M × N . Thus, we have

a d-dimensional feature vector xk(m,n) ∈ Rd at each spatial location (m,n) ∈ Ω :=

{0, . . . ,M − 1} × {0, . . . , N − 1}. We also denote feature layer l ∈ {1, . . . , d} of xk

by xlk. The target of each training sample xk is denoted as yk, which is a scalar valued

function over the domain Ω. The correlation filter f has a stack of d layers, each of which

is a M × N convolution filter f l. The response of the convolution filter f on a M × N

sample x is computed by,

Sf (x) =
d∑
l=1

xl ∗ f l. (3.7)

Here, ∗ represents circular convolution. The desired filter f is obtained by minimizing the

L2-error between convolution response Sf (xk) of training sample xk and the correspond-

ing label yk with a more general Tikhonov regularizer w : Ω→ R,

ε (f) =
t∑

k=1

αk ‖Sf (xk)− yk‖2 +
d∑
l=1

∥∥∥ w

MN
· f l
∥∥∥2

. (3.8)

Here, · denotes point-wise multiplication. With the help of Parseval’s theorem, the filter

f can be equivalently computed by minimizing the equation (3.8) in the Fourier domain

with respect to Discrete Forurier Transform (DFT) coefficients f̂ ,

ε̂(f̂) =
t∑

k=1

αk

∥∥∥∥∥
d∑
l=1

x̂lk · f̂ l − ŷk

∥∥∥∥∥
2

+
d∑
l=1

∥∥∥∥ ŵ

MN
∗ f̂ l
∥∥∥∥2

. (3.9)

Here,ˆdenotes the DFT of a function. After learning the DFT coefficients f̂ of filter f , it

is typically applied in a sliding-window-like manner on all cyclic shifts of a test sample

z. Let ŝ := F {Sf (z)} =
∑d

l=1 ẑ
l · f̂ l denote DFT (F) of the convolution response

Sf (z) evaluated at test sample z. The convolution response s(u, v) at continuous location
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(u, v) ∈ [0,M)× [0, N) are interpolated by,

s(u, v) =
1

MN

M−1∑
m=0

N−1∑
n=0

ŝ (m,n) ei2π(
m
M
u+ n

N
v). (3.10)

Here, i denotes the imaginary unit. The maximal sub-grid location (u∗, v∗) is then com-

puted by optimizing arg max(u,v)∈[0,M)×[0,N)s (u, v) using Newton’s method, starting at

maximal grid-level score (u(0), v(0)) ∈ Ω. Simillar to [17], the SRDCF tracker applies

sub-grid interpolation at multiple resolutions zr and computes corresponding detection

scores sr in order to estimate scale efficiently. In a nutshell, the standard SRDCF adapts

translation invariance efficiently by exploiting the periodic assumption with spatial regu-

larization, but this does not learn rotation adaptiveness inherently. Therefore, we propose

to extend the discriminative power of SRDCF by learning rotation adaptive filters.

3.3.3 Rotation Adaptive Correlation Filters in Tracking

We propose to incorporate rotation adaptiveness in spatially regularized correlation filters

by learning from appropriately oriented training samples. Similar to SRDCF, we solve

the resulting optimization problem in the Fourier domain, by employing a deterministic

orientation in each training sample. Let θk denotes the orientation corresponding to xk.

Without loss of generality, it can be assumed that θk = 0, ∀k ≤ 1. The training sample xk

undergoes rotation θk by,

xθk (m,n)(m,n)∈Ω =

xk (m′, n′) , (m′, n′) ∈ Ω

0 , elsewhere
(3.11)

where (m,n) and (m′, n′) are related by,

n
m

 =

cos(θk) − sin(θk)

sin(θk) cos(θk)

n′
m′

 . (3.12)

In other words, xθk is obtained by rotating xk anti-clockwise with an angle θk in the eu-

clidean space and cropping same size M × N as xk. In order to avoid wrong gradient

estimation due to zero paddings, we use a common solution that bands the rotated image
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Figure 3.11: Visualization of the cosine window used to suppress the false gradient
estimation due to rotated training samples.

patch with cosine window. For the ease of understanding, we have visualized the cosine

window used in Figure 3.11. This does not disturb the object structure assuming that the

patch size is larger than the target object. This is different from standard SRDCF, in a

sense that we learn the multi-channel correlation filter f from properly oriented training

samples
{(
xθk, yk

)}t
k=1

. The training stage of rotation adaptive filters is explained in the

following Section 3.3.3.1.

3.3.3.1 Training

The convolution response Sf (xθk) of the rotated training samples xθk ∈ Rd are computed

by,

Sf (x
θ
k) =

d∑
l=1

xθlk ∗ f l. (3.13)

After incorporating rotation into the DCF formulation, the resulting cost function is

expressed as,

εθ (f) =
t∑

k=1

αk
∥∥Sf (xθk)− yk∥∥2

+
d∑
l=1

∥∥∥ w

MN
· f l
∥∥∥2

. (3.14)
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Similar to SRDCF, we perform the Gauss-Seidel iterative optimization in Fourier do-

main by computing DFT of equation (3.14) as,

ε̂θ(f̂) =
t∑

k=1

αk

∥∥∥∥∥
d∑
l=1

x̂θlk · f̂ l − ŷk

∥∥∥∥∥
2

+
d∑
l=1

∥∥∥∥ ŵ

MN
∗ f̂ l
∥∥∥∥2

. (3.15)

The equation (3.15) is vectorized and simplified further by using fully vectorized real-

valued filter, as implemented in the standard SRDCF [28]. The aforementioned training

procedure is feasible, provided we obtain the object orientation corresponding to all the

training samples beforehand. In the following Section 3.3.3.2, we propose an approach to

detect the object orientation by optimizing an additional objective function.

3.3.3.2 Detection

At the detection stage, the correlation filter f learned from t training samples are utilized

to compute the convolution response of a test sample z obtained from (t + 1)th frame,

which is then optimized to locate the object in that (t + 1)th frame. For example, at

t = 1, we learn the coefficients of f from (xθ=0◦

k=1 , yk=1) and detect the object location,

(u∗k+1, v
∗
k+1), and orientation, θk+1 in the (t+ 1)th, i.e., 2nd frame. For efficient detection

of scale, we construct different resolution test samples {zr}r∈{b 1−S2 c,...,bS−1
2 c} by resizing

the image at various scales ar, as implemented in SRDCF[28]. Here, S and a denote

the number of scales and scale increment factor, respectively. Next, we discuss the false

positive elimination scheme, which offers notable gain in the overall performance.

3.3.3.3 False Positive Elimination (FPE)

As per our extensive experiments, we report that the convolution response map of test

sample may sometimes contain multiple peaks with equal detection scores. This situation

usually arises when the test sample is constructed from an image region that consists

of multiple objects with similar representations as target object. In fact, this issue can

occur in many real world scenarios, such as glove, leaves, rabbit etc. sequences from

VOT2016 dataset [5]. Therefore, we propose to maximize s(u,v)

‖(u−u∗k,v−v∗k)‖
unlike SRDCF,

which focuses on maximizing s(u, v) alone. Here, (u∗k, v
∗
k) denote the sub-grid level target
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location in the kth frame. Thereby, we intend to detect the object that has high response

score as well as minimum deviation from previous location. Arguably, this hypothesis is

justified by the fact that it is less likely for an object to undergo drastic deviation from

immediate past location. Thus, the issue of multiple peaks in convolution response is

eliminated up to some extent, as shown in Figure 3.12.

Figure 3.12: Sample frames from the sequence glove of VOT2016 [5]. The blue, green,
and red rectangle shows the groundtruth, ECO, and F-ECO outputs, respectively. Convo-
lution response of shaded (red) region (a) without, and (b) with false positive elimination.

3.3.3.4 Detection of Orientation (DoO)

Here, we elaborate the detection mechanism of object’s orientation in the test sample. Let

ŝθ := F
{
Sf (z

θ)
}

=
∑d

l=1 ẑ
θl · f̂ l represents the DFT of convolution response Sf (zθ),

evaluated at θ orientation of test sample z. Similar to equation (3.10), we compute sθ(u, v)

on a coarse grid (u, v) ∈ Ω by,

sθ(u, v) =
1

MN

M−1∑
m=0

N−1∑
n=0

ŝθ (m,n) ei2π(
m
M
u+ n

N
v). (3.16)
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Then, the aim is to find orientation that maximizes the total energy content in the convo-

lution response map by,

θk+1 = arg maxθ∈Φ

{
M−1∑
u=0

N−1∑
v=0

(
Sθ (u, v)

‖(u− u∗k, v − v∗k)‖

)2
}
. (3.17)

Here, Φ := {θk ± aδ}, where a = 0, 1, 2, . . . , A. Thus, the orientation space Φ consists of

(2A + 1) number of rotations with step size δ. In our experiments, we have used δ = 5◦,

and A = 2 based on the fact that an object’s orientation is less likely to change drasti-

cally between consecutive frames. Nevertheless, the orientation can be further optimized

by Newton’s approach, or any suitable optimization algorithm, starting at optimal coarse

orientation θk+1. Also, a suitable combination of A and δ can be chosen for searching ex-

haustively in Φ, but at the expense of time complexity. Next, we incorporate the FPE and

DoO techniques in Fast Sub-grid Detection method of standard SRDCF (Section 3.3.3.5)

formulation.

3.3.3.5 Fast Sub-grid Detection

We apply the Newton’s optimization strategy, as in SRDCF, for finding the sub-grid lo-

cation that maximizes the detection score. However, we incorporate the false positive

elimination and optimal orientation in the standard SRDCF sub-grid detection. Thus, we

compute the sub-grid location that corresponds to maximum detection score by,

(
u∗k+1, v

∗
k+1

)
= arg max(u,v)∈[0,M)×[0,N)

{
Sθk+1

(u, v)

‖(u− u∗k, v − v∗k)‖

}
, (3.18)

starting at (u(0), v(0)) ∈ Ω, such that
{

Sθk+1
(u(0),v(0))

‖(u(0)−u∗k,v(0)−v∗k)‖

}
is maximal.

3.3.4 Displacement Consistency

Motivated by the displacement consistency techniques, as proposed in [35], we enhance

the degree of smoothness imposed on the movement variables, such as speed and an-

gular displacement. We update the sub-grid location,
(
u∗k+1, v

∗
k+1

)
obtained from equa-
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tion (3.18) by,

(
u∗k+1, v

∗
k+1

)
= (u∗k, v

∗
k) + d1n∠ϕ1n,

d1n = ωd × d1 + (1− ωd)× d0,

ϕ1n = ωa × ϕ1 + (1− ωa)× ϕ0,

(3.19)

where, d0 =
∥∥(u∗k − u∗k−1, v

∗
k − v∗k−1

)∥∥, d1 =
∥∥(u∗k+1 − u∗k, v∗k+1 − v∗k

)∥∥,

ϕ0 = arctan
(
u∗k − u∗k−1, v

∗
k − v∗k−1

)
, ϕ1 = arctan

(
u∗k+1 − u∗k, v∗k+1 − v∗k

)
, ωd = 0.9, ωa =

0.9. The abrupt transition from (u∗k, v
∗
k) to

(
u∗k+1, v

∗
k+1

)
is restricted up to some extent by

reducing the contribution of d1 and ϕ1 slightly to 0.9. For ωd = ϕ = 1, the updated(
u∗k+1, v

∗
k+1

)
of equation (3.19) remains unaltered from the optimal solution of equa-

tion (3.18).

3.4 Contributions in Regression based Trackers

The overall architecture of our Temporal Regression (TR) based integration is shown in

Figure 3.13. As discussed in the contributions and the preceding sections we enhance

the visual inputs before feature extraction through an EF (Section 3.4.2), and thereafter,

the essential processing required for TR (Section 3.4.3) is depicted. For the sake of ex-

perimentation, we integrate the proposed methodology in ECO tracker, and showcase

the efficacy by comparing with various state-of-the-art trackers on OTB50 and VOT2016

datasets. We specifically provide a systematic approach based on well known regular-

ization framework for incorporating temporal information in DCF based trackers. The

framework has the provision to provide the proportionate weight-age across the previous

frames based on their similarity with current frame and also consider feature prioritization

based on the average information content in temporal domain.

At the beginning, we apply EF to each frame. After enhancement of visual informa-

tion (each frame), the search region from each frame is fed to the feature extractor. The

search region is decided based on the previous position and scale as implemented in [38].

The high dimensional CNN features, as extracted in [38], are projected onto a low dimen-

sional space, aiming at reduction of time complexity. To achieve this, we have applied
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EF

ECO

Figure 3.13: Temporal regression with weighted aggregation and enhancement filter as
proposed in this thesis (Section 3.4). Each frame is passed through enhancement filter
(EF) before going into feature extractor. The (ECO) detector uses the extracted features
and predicts the target attributes based on spatial correlation. The extracted features
are projected into a low dimensional space where these are concatenated with target at-
tributes. The concatenated features are then aggregated based on temporal correspon-
dence and used in learning the parameters (ω) of temporal regression.

principal component analysis (PCA) with 90% captured variance. The compressed fea-

tures are then concatenated with ECO detector outputs, and thereafter, these concatenated

features with weighted aggregation (Section 3.4.3.1) are accumulated in the aggregator.

LetX be a collection of feature vectors inm frames {x1, x2, ..., xm} ∈ R1×n, where n

represents the number of features extracted from the highly correlated patch in each frame.

Let Y be a collection of regression targets of the correspondingm frames {y1, y2, ..., ym} ∈

R1×p, where p represents the dimension of attributes in the order of target centroid (row, column)

and size (height, width) ,i.e., (r, c, h, w). The matrix Y contains the output ym of the

detector and X contains the corresponding input features to the detector. For robust pre-

diction of ỹm = xmω, we learn the regressor parameters ω ∈ Rn×p by accumulating the

previous estimates of target attributes Y (1 : m− 1), and the associated features with con-

trolled suppression of uncorrelated frames X̃(1 : m − 1). Then we propose to augment
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temporal regression output ỹm, with the spatial ECO detector output ym, by considering

mean ensemble ym+ỹm
2

consistently. The ensemble attributes are then fed back to the

aggregator, which are used to update the accumulated attributes in Y and X . However,

updating target attributes in both Y and X may unfairly emphasize falsely tracked targets

due to marginal inclusion of detector outputs. Therefore, we either update the concate-

nated detector outputs inX by xm(end−p−1 : end)← ym+ỹm
2

or regression targets in Y

by ym ← ym+ỹm
2

. This is indeed the case as our experiments show that updating X turns

out to be more effective than the other counter parts. Primarily, we discuss briefly the

architecture and fundamental working principles of ECO (Section 3.4.1), and thereafter,

the detailed contributions as illustrated in Figure 3.13.

3.4.1 Baseline Approach: ECO

In this section, we briefly discuss the recently introduced Efficient Convolution Operators

for Tracking (ECO) [38], which we have adopted as our baseline. The ECO tracker has

demonstrated exceptional outcomes in various benchmark datasets including OTB and

VOT. The introduction of factorized convolution operators in ECO, has reduced the pa-

rameters in the DCF model drastically. Apart from efficient convolution operators, the

ECO tracker proposes a method for feasible memory consumption by reducing the num-

ber of training samples, while maintaining diversity. Moreover, the efficient model update

strategy, as proposed in ECO, reduces the unfavourable sudden appearance changes as a

result of illumination variation, out-of-view, and deformation. As per the comprehensive

experimentation, the ECO tracker with deep features outperforms all the previous track-

ers that rely on DCF formulation. Motivated by these findings, we have integrated the

proposed framework in baseline ECO with deep settings in light of further improvement,

and demonstrated that the newly developed approach offers significant gain in numerous

challenging sequences.
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3.4.2 Enhancement Filter (EF)

In real world scenarios, it is intractable to obtain high quality visual information due to

stochastic nature of the environment. To combat the assimilated assessment of several

random fluctuations, while preserving the fine/sharp details of the information content in

images, we employ edge adaptive Gaussian smoothing. The AWGN Filter block in Fig-

ure 3.13 represents edge preserved Gaussian smoothing of additive white Gaussian noise

(AWGN) with three channel or 3D multi variate Gaussian kernel of standard deviation

close to 0 each (here, 0.1), in order not to smooth the edges. A detailed description on

AWGN filters can be found in [75]. To span the whole intensity from 0 to 255, while recti-

fying the contrast imbalance in each channel, we have employed linear contrast stretching

to each frame after AWGN removal.

Low frequency interference arises when the visual information is gathered under vari-

able illumination. This holds in almost all indoor scenes because of the inverse square law

of light propagation. Arguably, the outdoor scenes do not suffer from this effect, because

the sun is so far away, that all the tiny regions in an image appear to be at equal distance

from it. However, other illuminating sources may produce low frequency interference

in an unconstrained environment. Also, we may sometimes be interested in minute de-

tails of a scene, or scenes that manifest in high frequencies such as object boundaries.

Therefore, it is often desirable to suppress the unwanted low frequencies to leverage high

variations in a scene. While this issue has been studied extensively in image processing

tasks [75], even in state-of-the-art trackers, as per our knowledge, the necessary attention

for the same is not paid explicitly. So, we intend to introduce the popular algorithm, local

unsharp masking on visual object tracking paradigm. In local unsharp masking, a local

window is considered while computing a low pass filtered image. The low pass filtered

image is then subtracted from the actual image and the difference is multiplied by an

amplification factor. The difference is amplified only when it exceeds certain threshold

(= 0, here), which is used to suppress high frequency fluctuations due to noise. Thus, the

amplification factor is chosen according to the local variance. The aforementioned trans-

formation can be achieved using the Eqn. (3.20). A detail description of these methods
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along with essential comparisons can be found in [75].

g(x, y) = A[f(x, y)−m(x, y)] +m(x, y) (3.20)

whereA = kM
σ(x,y)

, k is a scalar,M is the average intensity of the whole image, σ(x, y) rep-

resents variance of the window. g(x, y), f(x, y), and m(x, y) represent resulting image,

input image, and low pass version of f(x, y), respectively.

3.4.3 Temporal Regression by Tikhonov Regularization in Tracking

Here, we elaborate our Temporal Regression (TR) framework with detailed analysis of

each key components such as Weighted Aggregation, Feature Prioritization, Tikhonov

Regularization, and Mean Ensembler.

3.4.3.1 Weighted Aggregation (WA) in Temporal Regression

Here, we illustrate the weighted aggregation strategy, which brings substantial gain on a

diverse set of tough sequences from tracking benchmarks. Let α ∈ Rm×1 represent the

coefficients for modulating them frames in temporal domain. The elements of α are com-

puted based on the projection of xm onto X which consists of m vectors in n dimensional

vector space. An important point to remember here is, even if m frames are modulated

based on this correlation metric, the frame xm remains unaltered due to maximal correla-

tion, and also, it is excluded from training set (Section 3.4.3). The underlying hypothesis

is to learn from the weighted aggregation of preceding features based on similarity mea-

sure with the test frame xm, and predict the current attributes ỹm. Thereby, we inhibit

the dominance of dissimilar frames in voting for target attributes in the current frame.

In other words, features from only those frames are amplified which have a contextual

correspondence with the test frame in the temporal domain. We squash the elements of

α using sigmoid activation in order to map the correlation values to a fixed smooth range

between 0 and 1 for all frames, reason for which is understandable. Thus, the modulation

coefficients can be computed using Eqn. (3.21), as used in our simulations, or by Eqn.

(3.22) to prevent early saturation. Early saturation can be detected by observing the cor-
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relation values. If the correlation values are very high, the sigmoid activation would give

saturated coefficients for all, which will restrain the suppression of uncorrelated frames.

In such cases, Eqn. (3.22) would be useful in discrimination.

α = sigmoid(
XxTm
n

), (3.21)

α = sigmoid(

√
XxTm
n

), (3.22)

where X ∈ Rm×n, xm ∈ R1×n, and α ∈ Rm×1.

The features from preceding m frames are modulated by α to enhance the contribu-

tion of highly correlated frames, while suppressing the contribution of uncorrelated ones.

Thereby, efficient aggregation of past information is utilized in learning the parameters of

regressor, which leads to robust prediction of target attributes in the subsequent frames.

The modulated training samples are computed by Eqn. (3.23).

X̃ = X. ∗ α (3.23)

where .∗ represents row wise multiplication with corresponding scalar value of α ,i.e.,

X̃(i, :) = X(i, :) ∗ α(i), i = 1, 2, . . . ,m and ∗ represents element wise multiplication.

After obtaining X̃ = {x̃1, x̃2, . . . , x̃m}, the training features are further regulated based

on entropy of the associated random variables (Section 3.4.3.2).

3.4.3.2 Feature Prioritization through Entropy Estimation (FPEE)

In this section, we briefly discuss an efficient feature engineering approach as part of WA,

taking into account the uncertainty preserved in each feature in the temporal domain. The

hypothesis is to estimate the entropy of each feature in X̃ across allm frames, and use this

information content to enhance the contribution of that particular set of features towards

estimation of target attributes. This can be achieved by modulating each column of X̃ ,

which is in contrast to row wise modulation, as done by α. Let fi ∈ R1×m, i = 1, 2, . . . , n

represent a random variable with observations drawn from the ith feature of all m frames.

For the ease of experimentation, the observations of these random variables are used to
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Figure 3.14: The histogram of features are computed with fixed number of bins(here,
10). The normalized count is used as probability density Pfi . The distributions of f1(left)
and f104(right) are used to quantify the amount of information content in the correspond-
ing features.

estimate the distribution based on normalized histogram counts. For better understanding,

we have visualized the histogram of two random variables f1 and f104 in Figure 3.14.

The basic intuition is, learning that an unlikely event has occurred is more informative

than a likely event has occurred. Therefore, we define self-information of event f = f

by I(f) = − logPf (f), with base e, as characterized in information theory. The self-

information deals with a single outcome which leads to several drawbacks, such as an

event with unity density has zero self-information, despite it is not guaranteed to occur.

Therefore, we have opted Shannon entropy,

H(f) = Ef∼Pf [I(f)] = −Ef∼Pf [logPf (f)] ,

which is used to deal with such issues [76], to quantify the amount of uncertainty con-

served in the entire distribution. We use this uncertainty measure to enhance, or suppress

the training features in X̃ = f1, f2, . . . , fn by Eqn. (3.24).

f̃i = fi ∗H(fi), i = 1, 2, . . . , n (3.24)

Consequently, the parameters (ω) of temporal regression are computed with the updated
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training features X̃ =
{
f̃1, f̃2, . . . , f̃n

}
.

3.4.3.3 Tikhonov Regularization in Temporal Regression

Here, we describe the context in which we employ standard Tikhonov regularization. To

ensure smooth variation of temporal weights (ω), we have penalized the coefficients with

larger norms. In our formulation, λξ represents the standard Tikhonov operator. For equal

preference, we have set ξ to be an identity matrix I ∈ Rm×n, and λ to be 1000. Thus, after

incorporating temporal correspondence by WA and FPEE, the standard ridge regression

has been updated to Eqn. (3.25).

J =
∥∥∥X̃ω − Y ∥∥∥2

2
+ λ ‖ξω‖2

2 (3.25)

The closed-form solution of J can be obtained as following.

∇ω

{∥∥∥X̃ω − Y ∥∥∥2

2
+ λ ‖ξω‖2

2

}
= 0

i.e.∇ω

{
(X̃ω − Y )T (X̃ω − Y )

}
+ λ∇ω

{
(ξω)T (ξω)

}
= 0

i.e.∇ω

{
ωT X̃T X̃ω − ωT X̃Y − Y T X̃ω + Y TY

}
+ λ∇ω

{
ωT ξT ξω

}
= 0

i.e.2X̃T X̃ω − X̃TY − X̃TY + 2λξT ξω = 0

i.e.
[
X̃T X̃ + λξT ξ

]
ω = X̃TY

(3.26)

ω =
[
X̃T X̃ + λξT ξ

]−1

X̃TY ,

where ω ∈ Rn×p, and the predicted target attributes are computed by ỹm = xmω.

3.4.3.4 Mean Ensembler for Spatio-Temporal Aggregation

This section depicts the theoretical background on the efficacy of mean ensemble. The

proposed dynamic model comprises two models having minimal interdependence in their

way of implementation. The detector works in the spatial domain with efficient training

and robust model update strategy. On the contrary, the regression model operates in the

temporal domain maximizing the correspondence with visual features from the current
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frame, and capturing the physically meaningful movement variables, such as position

and angular displacement. Hence, the composition of these two models with bootstrap

aggregation would be beneficial in lessening the overall error [76]. Assume there are k

models with error δi ∼ N (µ = 0, σ2 = v), i = 1, 2, . . . , k. Let the covariance E[δiδj] = c.

The error made by the mean ensembler output would be 1
k

∑k
i=1 δi. The expected squared

error predicted by the ensembler would be

E

(1

k

k∑
i=1

δi

)2
 = E

[
1

k2

k∑
i=1

(
δ2
i +

k∑
j=1,j 6=i

δiδj

)]
=
v

k
+
k − 1

k
c.

If the models are perfectly correlated ,i.e., E [δiδj] = c = v, then there will not be

any improvement in expected squared error v. However, the uncorrelated models ,i.e.,

E [δiδj] = 0 would shrink the expected squared error by k times. Thus, the proposed

dynamic model would perform significantly better than the individual models with ap-

proximately half the error. In addition, the speed wont degrade much due to closed-form

solution of the temporal weights, which can be computed in O(1) time complexity.

1 26 33

3635 37

Figure 3.15: Coefficients of aggregation α, which are used to modulate the preceding
features of the corresponding frames based on similarity rational. Here, x37 has been
projected onto X(1 : 35), where n = 3140,m = 37, i.e., xi ∈ R1×3140, i = 1, 2, . . . ,m,
X ∈ R37×3140, Y ∈ R37×4, and ω ∈ R3140×4.
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3.4.4 Revisiting Temporal Regression

Here, we discuss about some key technical contributions in the proposed framework that

offers additional gain in the performance standard. One of the major observations is that

elimination of immediate past frame ((m − 1)th) from computation of temporal coeffi-

cients provides improvement over inclusion of the immediate past frame. We remark that

the (m − 1)th frame may not necessarily correlate maximally with the current frame.

Also, the output of the tracker may sometimes lead to false positive bounding box which

will incrementally allow it to drift away from the actual target. In other words, the tra-

jectory of an object, moving in a straight line may become curved during regression due

to the (m− 1)th false positive localization. A possible solution could be to eliminate few

past frames from TR, but this would restrain the learning of recent appearance changes.

Therefore, a possible solution is to remove the effect of last frame from training, which

would capture the actual straight line trajectory, and thus, it will assist in few scenarios

where drastic change is a major concern. We have eliminated the experiments with re-

moval of more immediate frames based on qualitative analysis, and showcase the efficacy

of removing immediate past frame on whole OTB50 dataset. However, this approach

may become troublesome when the actual trajectory has abrupt deviation from previous

estimates. So, the weighted mean ensemble of detector, which is mostly right (more

weightage, 0.7), and TR would be useful to tackle this issue. Figure 3.15 illustrates that

the current frame m = 37 has relatively lower correlation with immediate past frames

than long term frames. A few sample frames from Ironman sequence of OTB50 are also

shown to visually validate our hypothesis.

In order to reduce the computational complexity for very large sequences, we have

borrowed few ideas on Long Short Term Memory (LSTM) from Recurrent Neural Net-

works (RNN), and used only previous 50 frames excluding the immediate past frame.

For ease of understanding, we have explained the fundamental principles of our architec-

ture in Section 3.4. However, the actual implementation has been refined slightly based

on the aforementioned key observations, which we have explained in Algorithm 1 for

reproducibility.
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Algorithm 1 Temporal Regression

Define global cell arrays X = {} and Y = {}
repeat at each frame

Input: (ECO) detector output ym, and feature vector xm.
Processing: Transform xm into PCA space with 90% captured variance,

xm ←PCA(xm). Concatenate ym with xm, xm(end + 1 : end + 4) = ym. Ac-
cumulate new xm ∈ R1×n in X , X {end+ 1, 1} = xm and ym ∈ R1×4 in Y ,
Y {end+ 1, 1} = ym. Let frame(m) represent the number of elements in cell X, which
is equivalent to the current frame index. Initially, m = 1 and l = 2.

if m > l then
Assign s to max(m− 50, 1).
Compute aggregation coefficients, α = X(s:m−l)∗X(m)T

n
.

Smoothen using sigmoid activation, α = sigmoid(α).
Employ weighted Aggregation, X̃ = X. ∗ α.
for i = 1 to n do

Select ith feature from all frames, fi = X̃(:, i).
Estimate Shannon Entropy of fi, H(fi) = −Efi∼Pfi [logPfi(f)].
Update features, f̃i = fi ∗H(fi), and X̃(:, i) = f̃i.

end for
Consider X̃ = X̃(s : m− l), and Ỹ = Y (s : m− l).

Compute temporal regression parameters, ω =
[
X̃T X̃ + λξT ξ

]−1

X̃T Ỹ .
Generate predictions, ỹm = xmω.
Ensemble detector and regression outputs, op = 0.7∗ym+0.3∗ỹm

2
.

Update target attributes in xm, xm(n− 3 : n)← ym+ỹm
2

.
end if
Process the next frame, m = m+ 1
Output: op

until the end of frames.
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Chapter 4

Tracking Benchmarks and Evaluation Metrics

Datasets play a critical role in almost all computer vision tasks. In the case of the object

classification problem, there has been a tremendous evolution from Caltech101 [77] to

PASCAL VOC [78] and then to large-scale ImageNet [79]. While such an evolution has

also occurred in the case of tracking, it has been at smaller scale and a slower pace, and

has its fair share of issues. Most video sequences in initial datasets were recorded in an

unnatural experimental environment, or in some cases selected to highlight the advantages

of the proposed tracker. Furthermore, they lack a common protocol for ground truth

annotation, and are typically small in number. These issues are being addressed by recent

datasets and benchmarks [14, 80, 5]. In this section, we first briefly review publicly

available model-free tracking datasets, and then introduce the datasets and corresponding

evaluation methods used in this thesis.

4.1 Overview of Tracking Datasets

4.1.1 Amsterdam library of ordinary videos (ALOV++) dataset

Generality is a very important feature for good model-free trackers. Smeulders et al.[80]

argued that most trackers, have only been evaluated on a limited number of sequences,

and the evaluation results are insufficient to make conclusive remarks on the validity and

robustness of the proposed methods in a variety of circumstances. To address this is-

sue, a large and diverse dataset was proposed. The ALOV++ dataset contains 315 video

sequences with 89,364 frames in total from several sources: 22 sequences come from

standard and recent tracking datasets, 65 sequences are from performance evaluation of

tracking and surveillance (PETS) workshop [81], and 250 new sequences are collected

from YouTube with 64 different types of targets. The ALOV++ dataset is annotated with

a regular bounding box (i.e., axis-aligned box) enclosing the target. Due to the large size



of the dataset, ground truth is manually annotated every fifth frame, while the annota-

tion of the intermediate frames is obtained by linear interpolation. ALOV++ is available

online at http://www.alov300.org.

4.1.2 NUS people and rigid objects (NUS-PRO) dataset

It is the largest publicly available tracking dataset so far, and contains 365 video se-

quences collected from YouTube. All the sequences in NUS-PRO belong to five cate-

gories, namely, face, pedestrian, sportsman, rigid object and long sequences. The five

categories contain 17 kinds of objects in all. Many video sequences in the NUS-PRO

dataset are recorded by hand-held cameras which makes it close to real-life scenarios,

e.g., videos contain abrupt object movement or motion blur. Moreover, occlusion, usu-

ally missing or casually marked in other tracking datasets, is elaborately considered and

annotated in three categories: no occlusion, partial occlusion and full occlusion. The

NUS-PRO dataset and the evaluation system are available at

http://www.lv-nus.org/pro/nus_pro.html.

4.1.3 Princeton tracking benchmark (PTB) dataset

Song and Xiao [82] constructed an RGBD tracking dataset of 100 video sequences, which

are captured with a standard Microsoft Kinect 1.0. It is the first attempt to build a

tracking dataset with depth information, which significantly reduces the ambiguity ex-

isting in RGB images [83], and can be used to prevent model drifting and handle oc-

clusion cases. However, due to the constraint of the recording device, the depth of the

captured object can only vary from 0.5 to 10 meters, and thus all the RGBD video se-

quences are captured indoors. The PTB dataset and the evaluation system are available at

http://tracking.cs.princeton.edu.

We use the-state-of-the-art object tracking benchmark (OTB) [14] and the visual ob-

ject tracking (VOT) challenge [5] datasets extensively in this thesis, and will discuss them

in 4.2. A summary of tracking datasets is shown in Table 4.1.
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Dataset #Videos
Groundtruth
(rectangle) Data

TB-50/100 [14] 100 Axis-aligned RGB,gray
VOT [5] 60 Rotated RGB
ALOV++ [80] 315 Axis-aligned RGB,gray
PTB [82] 100 Axis-aligned RGBD
NUS-PRO [77] 365 Axis-aligned RGB

Table 4.1
A summary of popular tracking datasets.

4.2 Datasets and evaluation methods used

4.2.1 Object tracking benchmark (OTB) dataset

The object tracking benchmark dataset [14], named OTB, is a collection of 50 commonly

used tracking sequences, where the object varies in scale, has fast motion, or is occluded.

The first frame of each sequence in OTB is illustrated in Figure 4.1.

In order to present the progress of tracking algorithms and set a general benchmark,

29 methods are compared in [14]. Two well-adopted evaluation methodologies are used:

precision and success. Precision reflects the center location error. It is measured as the

percentage of frames whose predicted object location (center of the predicted box) is

within a distance varying between 0 and 50 pixels from the center of the ground truth box.

The precision score is the percentage value when threshold distance is set to 20 pixels. The

success measure is based on the bounding box overlap. It shows the percentage of frames

whose intersection over union overlap with the ground truth annotation is over a threshold,

varying between 0 and 1. Instead of using a fixed threshold, the area under curve (AUC)

of the success plot determines the success score in order to rank the algorithms. The

robustness of different trackers is evaluated with the following three procedures.

• One-pass evaluation (OPE): It is a conventional method to evaluate trackers. All

the trackers are run on the test sequences with the initializations from the ground

truth position in the first frame, and the average precision and success scores are

measured.

• Temporal robustness evaluation (TRE): Each sequence for testing is divided uni-
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Figure 4.1: Visualizing initialization frame of few sequences from OTB [14] benchmark.

formly into 20 segments. Each tracker is initialized at the beginning of a segment

and evaluated until the end of the entire sequence. The tracking results of all the 20

tests are averaged to generate the precision and success scores.

• Spatial robustness evaluation (SRE): For every sequence, each tracker is initial-

ized in the first frame with shifted or scaled ground truth bounding box. As a de-

fault, each tracker is evaluated 12 times with different initial bounding box settings:

eight spatial shifts including four center shifts and four corner shifts (10% of target

size), and 4 scale variations (i.e., 0.8, 0.9, 1.1 and 1.2) with respect to the ground

truth in the first frame. The precision and success scores are calculated from the
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average of all these 12 evaluations in order to rank the trackers.

4.2.2 Visual object tracking (VOT) challenge dataset

The visual object tracking (VOT) challenge was introduced in 2013 with the aim of pro-

viding a standardized platform to evaluate singlecamera, single-target, model-free, causal

short-term tracking algorithms. It has been organized as an annual workshop in conjunc-

tion with ICCV or ECCV conferences. In each workshop, a fully annotated dataset with

several per-frame visual attributes is released. Each frame in the dataset is manually or

semi-automatically labeled with six visual attributes, including occlusion, illumination

change, motion change, size change, camera motion and unassigned. In addition to the

dataset, an evaluation toolkit is also developed and actively maintained, which allows easy

integration of third-party trackers for fair comparison. We use the datasets released for

the challenge organised in 2016, namely VOT2016 [5] benchmark.

The evaluation scheme of VOT challenge uses accuracy and robustness measures to

compare trackers, due to their high level of interpretability [84]. Raw accuracy is com-

puted as the mean intersection over union score with the ground truth bounding box over

the entire sequence (while discarding ten frames immediately following a tracking failure

to further reduce the bias in accuracy measure), and raw robustness is the number of times

the tracker has failed. A tracking failure is signaled in a frame t if the predicted box does

not overlap with the ground truth annotation. In this case, the tracker is restarted from

scratch in frame t+ 5 with the corresponding ground truth annotation in order to alleviate

the bias in robustness measure. For a robust comparison, the scores are averaged over 3

repitive runs of the tracker to account for any stochastic behavior. The first frame of each

sequence in VOT2016 is illustrated in Figure 4.2.
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Figure 4.2: Visualizing initialization frame of few sequences from VOT [5] benchmark.
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Chapter 5

Experimental Details and Analysis

5.1 Introduction

Here, we provide necessary details regarding our experimental setup, and critically anal-

yse our contributions along with other state-of-the-art trackers. At first, we provide the

experimental details of deep learning based trackers (Section 5.2). Thereafter, the per-

formance assessment of correlation filter based trackers (Section 5.3), followed by the

essential evaluation results on temporal regression models (Section 5.4).

5.2 Experiments in Deep Learning based Trackers

We have evaluated original CFnet and our modified CFnet on 43 sequences out of OTB50

with 3 repetitions for each sequence in order to get a rough estimation of the performance.

These particular sequences were selected based on the toughness of deformations incurred

in the object of interest. For the evaluation on 43 sequences, we have used OTB-TRE

function which has been provided in original CFnet [18] codes repository. The tracking

performance varies from machine to machine based on whether GPU support is enabled.

The reason for this is the numerical effects which gets accumulated over time. Due to

which, most of the trackers suffer from a slight variation in results when re-evaluated on

different machines. In order to avoid this effect, we have evaluated the original tracker and

all our modifications under exactly same circumstances i.e. same sequences, same system

and same evaluation function. The results are given in Table 5.1. From Table 5.1, it is

clearly observed that our proposed displacement 3.2.3 and scale 3.2.4 correction schemes

have improved the performance of original CFnet [18]. The success and precision values

for different angles of rotation are shown in Table 5.1. From Table 5.1, it is clear that the

tracker achieves optimal performance for the angle of rotation ζ = 8◦ and its performance



Figure 5.1: A rough estimation for optimal angle of rotation ζ using OTB-TRE function
given in CFnet [18] code repository. A chart of success(AUC) and precision(Threshold)
vs various angle of rotation.

decreases with increase in angle of rotation. This is evident from practical point of view

as there won’t be drastic change in orientation between two subsequent frames.

Final evaluation is done using OTB toolkit for all 50 sequences [14] and only impor-

tant results are shown due to space constraint. The success rate of original CFnet could not

be plotted because of the unavailability of final bounding boxes in OTB results database

during the time of writing the thesis. A comparison between our modified CFnet and

current state-of-the-art trackers is shown in Figure 3.9. Due to lack of rotated bounding

box results of other trackers, we had to use axis aligned bounding box during accuracy

assessment. So there is a slight improvement in accuracy and precision as shown in Table

5.2. This performance will certainly be enhanced if compared with rotated bounding box

results which unfortunately isn’t available for most of the trackers. The success(AUC)

and precision plots obtained by using fully integrated OTB toolkit are shown in Figure
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Tracker Success(AUC) Precision (Threshold)
CFnet 57.3447 65.0869

CFnet D 59.0531 69.3120

CFnet DS 59.0531 70.3673

CFnet DSR 58.7865 69.1349
(ζ = 8◦)

Table 5.1
Integration of Displacement 3.2.3, Scale 3.2.4 Correction and rotation invariant strategy
3.2.5. DSR stands for Displacement correction, Scale correction and Rotation invariant
strategy respectively.The results are obtained using the OTB-TRE evaluation function
provided in original CFnet [18] code. This evaluation is similar to OTB toolkit eval-
uation, but not exact. The reason behind using this evaluation function is to make a
fair comparison with the original CFnet [18]. The comparison is done for axis aligned
bounding box results.

Tracker Success(AUC) Precision (Threshold)
CFnet 52.7 70.2

CFnet DS 52.9 70.0

CFnet DSR 52.8 71.5
(ζ = 8◦)

Table 5.2
Fully integrated OTB-OPE comparison. The results are obtained using OTB toolkit.

5.2 and Figure 5.3 respectively.

As per the results obtained using fully integrated vot-toolkit as shown in Table 5.3,

an improvement of 15.57% in accuracy rank and 14.3% in robustness rank have been

observed with no degradation in overlap ratio. Since the absolute value of the accu-

racy and robustness rank varies based on the trackers used for evaluation, the relative

improvements of proposed methods over the original have been used to showcase the ef-

ficiency. The ranking plot for experiment baseline is shown in Figure 5.4, which depicts

the improvement in accuracy and robustness of proposed modified Siamese DSR over the

original SiameseFC.
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Figure 5.2: OTB50 success plot(AUC) obtained using OTB toolkit (Values are scaled
down from 100 to 1 by the toolkit). Original CFnet-conv2 success rate(OPE) for OTB50
is equal to 0.527 as per the evaluation in our system.

Figure 5.3: OTB50 precision plot obtained using OTB toolkit. Original CFnet-conv2
precision(OPE) for OTB50 is equal to 0.702 [18] as per the evaluation in our system.
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Figure 5.4: VOT Ranking Plot for experiment baseline(mean).

Tracker
Accuracy
Rank

Robustness
Rank

Mean
Overlap

MDNet 1.00 1.00 0.57
CCOT 1.17 1.67 0.54
SiameseFC 1.17 6.50 0.52
Siamese DSR 1.00 5.67 0.52
CFnet-conv2 1.33 5.00 0.52
CFnet DSR 1.50 4.50 0.52

Table 5.3
VOT AR ranking for experiment baseline. Siamese DSR represents the proposed modi-
fied network over original SiameseFC[9]. CFnet DSR represents the proposed modified
network over actual CFnet-conv2 [18]
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Tracker ECO
D-
ECO

DF-
ECO

R-
ECO

RF-
ECO

RD-
ECO

RDF-
ECO

RIDF-
ECO

AEO 0.357 0.360 0.362 0.383 0.386 0.395 0.402 0.433
%Gain Baseline 0.8 1.4 7.3 8.1 10.6 12.6 21.3

Table 5.4
Quantitative evaluation of individual components on a set of 16 challenging videos.

5.3 Experiments in Correlation Filter based Trackers

In order to perform an unbiased analysis that may arise due to varying numerical precision

of different systems, we evaluate all the experiments, including baseline SRDCF and ECO

on the same system under identical experimental setup. We use the similar parameter

settings as baseline, apart from the additional parameters δ = 5◦, and A = 2 in rotation

adaptive filters. In IC, we use output intensity range [0, 255] for contrast stretching, and a

threshold 0.5 for unsharp masking. A detailed description on the use of these parameters

in contrast stretching and unsharp masking can be found in [75]. We use VOT toolkit [5]

for evaluating the performance of compared trackers on VOT2016 dataset.

We progressively integrate Displacement consistency (D), False positive elimination

(F), Rotation adaptiveness (R), Illumination correction (I), and their combinations into

ECO framework for faster experimentaion, and assimilate the impact of each individual

component on AEO, which is the standard metric on VOT benchmark. To analyze the

ability of illumination and rotation adaptiveness separately, we evaluate each individual

component on a set of 16 videos (Table 5.4). The set is constructed from the pool of

VOT2016 dataset. A video is selected if its frames are labelled as either severe deforma-

tion, rotation, or illumination change by the VOT2016 benchmark. Note that, the FPE

scheme improves the performance in every integration, and illumination correction pro-

vides a gain of 7.7% over base RDF-ECO. As per the results in Table 5.4, the proposed

ideas independently and together provide a good improvement relative to base model.

We further evaluate the top performing models, including individual components of

SRDCF, on whole VOT2016 dataset (Table 5.5). As per the results in Table 5.5, the I-

SRDCF, RDF-SRDCF, and RIDF-SRDCF provide a considerable improvement of 3.53%,

10.60%, and 11.41% in AEO, 4.83%, 17.87%, 13.04% in robustness, respectively. The
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Trackers SRDCF
I-
SRDCF

RDF-
SRDCF

RIDF-
SRDCF TCNN CCOT ECO MDNet

RIDF-
ECO

AEO 0.1981 0.2051 0.2191 0.2207 0.3249 0.3310 0.3563 0.3584 0.3624
Failure Rate
(Robustness) 2.07 1.97 1.70 1.80 0.96 0.83 0.78 0.76 0.73

Table 5.5
State-of-the-art comparison of proposed methods on whole VOT2016 dataset.

RIDF-ECO performs favourably against the state-of-the-art trackers with a slight im-

provement of 5.27% in AEO, and as high as 6.41% in robustness. Note that, the per-

centage improvements are computed relative to baseline. In Figure 5.5, we show the

oriented bounding box results which are obtained from the RIDF-SRDCF tracker. Due

to unavailability of results on whole VOT2016 dataset in the required format, we were

unable to compare few rotation adaptive trackers [62, 63, 35] with our trackers. However,

since our rotation adaptive tracker: RIDF-ECO offers significant gain relative to baseline

(ECO) that outperforms few state-of-the-art rotation adaptive trackers [62, 63, 35], we

report that the proposed rotation adaptive scheme will surpass these counter parts with

ease. The overall time complexity of our RIDF-SRDCF tracker sums up to

O
(
ASdMN logMN + (ASdMN + ASMN)NNe +MN +

(
d+ k2

)
dMNNGS

)
,

(5.1)

excluding the feature extraction, where K, NNe, and NGS denote the number of non-zero

Fourier coefficients in ŵ, the number of iterations in sub-grid detection, and the number

of iterations in Gauss-Seidel optimization, respectively. Note that, the last term dominates

the overall computational complexity.

Figure 5.5: Sample frames from the sequence iceskater1 of VOT2016. The blue, green,
and red rectangle shows the groundtruth, SRDCF, and RIDF-SRDCF outputs, respec-
tively. The RA correlation filters efficiently detect the orientation of the traget object.
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5.3.1 Computational Complexity of Rotation Adaptiveness

The Fast Fourier Transform (FFT) of a 2-dimensional signal of size M ×N can be com-

puted inO(MN logMN). Since there are d feature layers, S scales, and (2A+ 1) orien-

tations, the training and detection stage of our algorithm requires O (ASdMN logMN)

FFT computations. To compute the convolution response, the computed FFTs require

O (ASdMN) multiplication operations, and O (ASMN) division operations. The divi-

sion operations are used in False Positive Elimination (FPE) strategy. Assuming that the

Newton’s optimization converges in NNe iterations, the total time complexity of matrix

multiplication and FPE sums up to O ((ASdMN + ASMN)NNe). In contrast to stan-

dard SRDCF [7], we learn the multi-resolution filter coefficients from properly oriented

training samples. After detection of orientation through optimization of total energy con-

tent on a coarse grid, the training samples are oriented appropriately in O (MN) time

complexity. The fraction of non-zero elements in At of size dMN × dMN , as given in

standard SRDCF, is bounded by the upper limit 2d+k2

dMN
. Thus, the total time complexity of

standard SRDCF training, assuming that the Gauss-Seidel optimization coverges in NGS

iterations, sums up to O ((d+ k2) dMNNGS). In addition to the standard SRDCF train-

ing, our approach requires O (MN) operations to orient the samples, leading to a total

complexity ofO (MN + (d+ k2) dMNNGS). Therefore, the overall time complexity of

our RIDF-SRDCF is given by,

O
(
ASdMN logMN + (ASdMN + ASMN)NNe +MN +

(
d+ k2

)
dMNNGS

)
.

(5.2)

Note that the overall complexity is largely dominated byO ((d+ k2) dMNNGS), leading

to slight increment in computational cost, but significant improvement in overall perfor-

mance of RIDF-SRDCF relative to standard SRDCF.

5.3.2 Detailed Experimental Evaluations

Here, we demonstrate additional evaluation results to experimentally validate the efficacy

of our contributions in visual object tracking. In Section 5.3.2.1 and 5.3.2.4, we show the

results of RIDF-SRDCF and RIDF-ECO, respectively.
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5.3.2.1 Evaluation of RIDF-SRDCF

In this section, we show the experimental results of RIDF-SRDCF evaluated by fully in-

tegrated vot-toolkit on whole VOT2016 dataset [5]. To qualitatively assess the overall

performance of RIDF-SRDCF, we compare our results with baseline approach on few

challenging sequences from VOT2016 dataset, as shown in Figure 5.6. Further, we quan-

titatively assess the performance by comparing the Average Expected Overlap (AEO) of

few correlation filter based trackers, as shown in Figure 5.7.

5.3.2.2 Qualitative Analysis

Figure 5.6 shows the qualitative comparison of the proposed RIDF-SRDCF tracker with

various correlation filter based trackers.

5.3.2.3 Quantitative Analysis

The proposed RIDF-SRDCF outperforms the standard SRDCF in most of the individ-

ual categories that leads to 11.4% and 13.04% overall improvement in AEO and robust-

ness, respectively. The categorical comparison, as can be inferred from Figure 5.7, shows

56.25%, 23.53%, 38.46%, 5.26%, and 16.66% gain in Illumination change, Size change,

Motion Change, Camera motion, and Empty categories, respectively. Note that the per-

centage improvement is computed relative to base SRDCF.

5.3.2.4 Evaluation of RIDF-ECO

To assess the overall performance of the proposed RIDF-ECO, we evaluate the tracker on

whole VOT2016 dataset [5]. The qualitative and quantitative analysis of RIDF-ECO along

with few state-of-the-art trackers are shown in Figure 5.8, and Figure 5.9, respectively.

5.3.2.5 Qualitative Analysis

Figure 5.8 shows the qualitative comparison of the proposed RIDF-ECO tracker with

state-of-the-art trackers.
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GroundTruth RIDF-SRDCF SRDCF KCF

Figure 5.6: Qualitative analysis of RIDF-SRDCF compared with baseline SRDCF and
few other correlation filter trackers. The proposed tracker performs favourably against
the other correlation filter trackers. The rotation adaptive filters assist in determining
the orientation of the target object effectively that leads to substantial gain in overall
performance.

5.3.2.6 Quantitative Analysis

The proposed RIDF-ECO outperforms the state-of-the-art trackers in most of the individ-

ual categories that leads to 1.72% and 18.5% overall improvement in AEO and robustness,

respectively. Though the performance of RIDF-ECO in individual categories is reason-

ably good, except Camera Motion, the gain is significant in Occlusion (23.81%), Motion

Change (13.33%), and Empty (13.33%) categories. The improvement in Illumination

change category is not as significant as in RIDF-SRDCF because RDF-ECO performs

reasonably well in this category, leaving slightest scope for substantial gain in RIDF-
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Baseline Illum Change Size Change

Camera Motion OcclusionMotion Change Empty

Figure 5.7: Average Expected Overlap analysis of correlation filter based trackers.

ECO. Also, we observe that the RIDF-ECO degrades the performance of base ECO [38].

Moreover, the overall performance of RIDF-ECO is reasonably better than the base ECO

in terms of detecting orientation, eleminating false positives, reducing failure rate etc. that

leads to 1.71%, and 6.41% gain in Average Expected Overlap (AEO), and robustness, re-

spectively.
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GroundTruth RIDF-ECO ECO SRDCFCCOT

Figure 5.8: Qualitative analysis of RIDF-ECO compared with baseline ECO and few
other state-of-the-art trackers. The proposed tracker performs favourably against the
state-of-the-art trackers. The orientation of the target object is determined efficiently
to some extent, mainly due to rotation adaptive correlation filters.

5.4 Experiments in Temporal Regression based Trackers

Here, we detail our experiments and draw essential inferences to validate our methodol-

ogy. We analyse our approach on two popular object tracking benchmarks: OTB50 and

VOT2016 under various critical circumstances. To avoid the ambiguity caused by numer-

ical computation of different machines, we evaluate both the baseline and our proposed

trackers on the same machine with exactly same experimental setup. We use the parameter

settings of ECO [38], including feature extraction, factorized convolution and optimiza-

tion, for generating detector output. We develop our algorithm by progressively integrat-

ing our contributions into baseline. We demonstrate the impact of individual components
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Baseline Occlusion Motion Change

Size Change Illum ChangeEmptyCamera Motion

Figure 5.9: Average Expected Overlap analysis of RIDF-ECO and state-of-the-art track-
ers.

Tracker WAEF TREF ECO TR2 TR1 WAEF1 ECO_EF WAEF2
Success Rate 0.651 0.648 0.643 0.627 0.619 0.615 0.611 0.610
Precision 0.880 0.877 0.874 0.849 0.839 0.825 0.822 0.814

Table 5.6
The success and precision area under the curve (AUC) of the individual components of
our proposed framework on OTB50.

by performing extensive experimentation on OTB50. We compare our top-performing

trackers with state-of-the-art trackers and show compelling results in all the challenging

categories of OTB50. Figure 5.10 shows the qualitative analysis of the proposed frame-

work.
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ECO MDNet CCOT DeepSRDCF SRDCFWAEF (Ours)

Figure 5.10: Qualitative anaysis of our WAEF tracker and several other state-of-the-art
trackers on two of the toughest sequences: Ironman and Soccer from OTB50 dataset.
Our WAEF tracker performs favourably against the top trackers.

Figure 5.11: The success and precision plots of our proposed WAEF, TREF, and several
state-of-the-art trackers on OTB50 dataset.

In Table 5.6, we analyse the performance of each method separately. To our surprise,

the enhancement filter (ECO_EF) degrades the performance on OTB50, even though it

offers appealing results on VOT2016 with 1.48% improvement in AEO (Table 5.8). TR1

and TR2 denote the temporal regression with training features from max(m − 50, 1) to

m−1 andm−2, respectively. Note that the TR1 and TR2 do not use weighted aggregation
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while computing ω. It is evident that TR2 is better than TR1 both in accuracy and robust-

ness, which validates our hypothesis of excluding immediate previous frame from training

TR model. Despite the weak performance of TR and ECO_EF compared to baseline, their

composition tracker TREF outperforms the baseline in Success rate and Precision. Fur-

ther, the WA and TREF consolidate into Weighted Aggregation with Enhancement Filter

(WAEF) which again achieves substantial gain over baseline. In WAEF1, WAEF2 and

WAEF, we update xm& ym, ym, and xm, respectively. It is evident that WAEF performs

better than its counterparts, which validates our claim of updating xm alone. We report

that the WAEF tracker exceeds the baseline with a gain of 1.24% in success rate, and

0.69% in precision.

In Figure 5.11, we compare our top-performing trackers with the state-of-the-art track-

ers. Among the compared trackers, our WAEF tracker does exceedingly well, outperform-

ing the winner on OTB50. We observe that the proposed framework is robust enough to

tackle the typical challenging issues in object tracking. In Table 5.18, we show the cate-

Tracker WAEF TREF MDNet ECO CCOT DeepSRDCF SRDCF HDT KCF
Out of view 0.657 0.654 0.617 0.644 0.636 0.551 0.512 0.479 0.368
Occlusion 0.654 0.652 0.631 0.643 0.632 0.555 0.532 0.504 0.405
Illumination
Variation 0.632 0.628 0.625 0.623 0.594 0.530 0.509 0.488 0.386

Low
Resolution 0.626 0.623 0.608 0.617 0.613 0.511 0.486 0.471 0.334

Background
Clutter 0.638 0.636 0.625 0.629 0.588 0.535 0.517 0.494 0.388

Deformation 0.634 0.634 0.627 0.621 0.602 0.532 0.520 0.488 0.399
Out-of-plane
rotation 0.646 0.642 0.627 0.636 0.605 0.549 0.516 0.503 0.399

FastMotion 0.645 0.643 0.620 0.637 0.625 0.554 0.523 0.499 0.365

Table 5.7
The success and precision plots in various category of our proposed WAEF, TREF, and
several state-of-the-art trackers on OTB50 dataset.

gorical comparison of area under the curve (AUC) and success rate, which are the standard

metrics on benchmark results. The WAEF tracker provides substantial cumulative gain

of 14.8% over all the crucial categories on OTB50. Moreover, the proposed architecture

does not deteriorate the baseline performance in either of the aforementioned categories.

We also evaluate the WAEF tracker on VOT2016 dataset, and compare the results in

Table 5.8. The WAEF tracker offers remarkable achievement, improving 5.28% AEO,
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Tracker WAEF ECO_EF MDNet ECO CCOT DeepSRDCF TricTRACK
AEO 0.3750 0.3616 0.3584 0.3563 0.3310 0.2763 0.1995
Ar 1.78 2.13 1.40 1.90 2.13 2.47 5.90
Rr 2.38 2.38 2.70 2.58 2.77 4.00 6.92

Table 5.8
Overall quantitative analysis of few trackers on VOT2016. AEO, Ar, and Rr represents
average expected overlap, accuracy rank, and robustness rank, respectively.

6.31% accuracy rank, and 7.75% robustness rank relative to baseline. In particular, the

WAEF tracker provides substantial improvement of 19.04% in occlusion, 27.66% in il-

lumination change, 33.33% in empty, and 10% in size change category of VOT2016, as

can be inferred from Figure 5.12. Also, to validate the usefulness of EF, we have exper-

imented ECO with EF alone. We observe that the enhancement filter assists in shaping

the visual information which eventually leads to notable gain in AEO. This implicates

that the robust feature extractors still lack high quality visual inputs that may boost the

performance. When all the contributions are incorporated, the GPU version of WAEF

runs at 8 FPS, which is same as the baseline. Due to unavailability of results on whole

OTB50 and VOT2016 in the required format, we were unable to compare a few similar

regression models [34, 74, 85] with our WAEF tracker. However, since the WAEF tracker

outperforms the state-of-the-art trackers, which are much better than the existing tempo-

ral regression models, we report that our proposed architecture will surpass these models

with ease.
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Figure 5.12: Average Expected Overlap (AEO) analysis of our WAEF tracker and several
other state-of-the-art trackers in various challenging categories of VOT2016.

AR ranking, as can be inferred from Figure 5.13, captures the accuracy and robustness
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(a) (b)Legend

Figure 5.13: (a) Ranking plot for experiment baseline. (b) AR plot for experiment base-
line. Highly accurate and highly robust trackers tend to fall at the top right corner. The
proposed WAEF tracker (Ar = 1.78, Rr = 2.38, A = 0.55, R = 0.94) surpasses the baseline
ECO (Ar = 1.90, Rr = 2.58, A = 0.54, R = 0.93 ) in accuracy as well as robustness which
lead to considerable gain in overall performance.

of a given tracker over all the sequences from VOT benchmark dataset(here, VOT2016).

Accuracy is a measure of overlap with ground truth bounding box whereas robustness is

a measure of deviation from actual centroid.

5.4.1 Expected Overlap Analysis

Most of the existing trackers suffer from a common problem that arises when the number

of frames in a sequence increases. The minor deviation from actual target gets accumu-

lated over time which subsequently results in drifting into the background. Therefore, the

expected overlap analysis plots, as shown in Figure 5.14, are used in determining the over-

all performance of these trackers in such scenarios. The proposed WAEF and ECO_EF

trackers outperform the baseline ECO and several other state-of-the-art trackers in most

of the categories on VOT2016 dataset. All the expected overlap curves are generated as

such by the VOT toolkit, which does not offer the provision to measure area under these

individual curves. Though there is a considerable improvement in almost all individual

categories, the gain is significant in illumination change, size change, and empty cate-

gories, as can be inferred from Figure 5.15, Figure 5.16, and Figure 5.17, respectively.
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Figure 5.14: Expected overlap curves for baseline (Overall) on VOT2016 dataset.

Figure 5.15: Expected overlap curves for baseline (illumination change) on VOT2016
dataset.
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Figure 5.16: Expected overlap curves for baseline (size change) on VOT2016 dataset.

Figure 5.17: Expected overlap curves for baseline (empty) on VOT2016 dataset.
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5.4.2 Quantitative Evaluation

The area under the curve (AUC) of success rate plot against overlap threshold is one of

the major evaluation metrics to compare the performance of various trackers. The success

plots of several challenging categories help to comprehend the overall performance of a

tracker. From the Figure 5.18, it is evident that the overall performance of the proposed

WAEF tracker is significantly better than the baseline ECO.

Figure 5.18: The success and precision plots of our proposed WAEF, TREF, and sev-
eral state-of-the-art trackers on OTB50 dataset. The WAEF and TREF trackers perform
favourably against the state-of-the-art trackers in all challenging scenarios.
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5.4.3 Qualitative Analysis

To qualitatively assess the performance, we have compared the bounding boxes of vari-

ous trackers including the proposed WAEF tracker in Figure 5.19. We have selected few

frames from some of the challenging sequences from OTB50 where the categorical com-

parison can be easily assessable. The proposed WAEF tracker performs significantly bet-

ter than the baseline approach (ECO) and other state-of-the-art trackers in several tough

categories.

WAEF (Ours) ECO MDNet CCOT DeepSRDCF SRDCF

Figure 5.19: Qualitative comparison of the proposed WAEF tracker with other state-of-
the-art trackers on few tough sequences from OTB50 dataset, such as (top to bottom)
Freeman4, Singer2, Matrix, Tiger2, and Dragonbaby. The compared sequences validate
the fact that WAEF tracker improves the performance of baseline ECO. It, in fact, pro-
vides substantial gain in various challenging categories with certain improvement in AUC
of success rate as well as precision.
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Chapter 6

Concluding Remarks and Future Scope

In our study of deep learning based trackers, we investigated the consequences of rota-

tion adaptiveness in object tracking. The proposed consistency techniques surely outper-

formed the baseline deep learning based algorithms [9, 18]. The success rate improved

by 4.6% whereas precision, by 6.75%, as given in Table 5.1. According to the evalua-

tion of proposed Siamese DSR on VOT [5], a drastic improvement in robustness rank by

15.7% and accuracy rank by 14.3% was observed with no degradation in overlap ratio

(Table 5.3). Above all, detecting the orientation of the target object, as proposed in this

thesis, will certainly be a significant boost in the tracking paradigm. As per the analy-

sis, the concept of rotation adaptive tracking with aforementioned motion consistencies

has been exceptional in determining the target centroid in most of the tough sequences in

popular tracking benchmarks. Our future research may include replacing the simple CNN

present in both Siamese and CFnet architectures with a very deep CNN.

Thereafter, in our study of correlation filter based trackers, we demonstrated that em-

ploying a simple, yet effective image enhancement technique, prior to feature extraction,

can yield considerable gain in visual object tracking. We analyzed the effectiveness of

proposed rotation adaptive correlation filters in standard DCF formulation, and showed

compelling results on a popular tracking benchmark. We renovated the sub-grid detection

approach by incorporating false positive elimination, and object’s orientation, which was

reflected favourably in the overall performance. Also, the supervision of displacement

consistency on CF trackers showed promising results in numerous challenging scenarios.

Moreover, the proposed contributions are simple and straight forward, and can be suitably

integrated with other CF trackers, leading to substantial improvement in overall perfor-

mance. Our future research of rotation adaptive correlation filter trackers may include a

more sophisticated optimization in the object’s orientation space.

At the end, in our study of temporal regression based trackers, we analysed the impact

of ridge regression with Tikhonov regularization in temporal domain, and showed promis-



ing results on popular benchmarks. Further, we introduced an approach to regress in the

temporal domain based on weighted aggregation and entropy estimation, which could

provide drastic improvement in various tracking benchmarks. Moreover, this temporal

regression framework is generic, and can accommodate other detectors with simultane-

ously leveraging the spatial and temporal correspondence. Our future scope may include

robust feature selection based on sophisticated density estimation. Also, we may inte-

grate the proposed framework into other detectors, and analyse the impact on generic

object tracking. Finally, we intend to write a research journal consolidating our whole

constributions, which include the proposed deep learning based models, correlation filter

based models, and temporal regression based models.
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