Monte-Carlo Siamese Policy on Actor for Satellite Image Super Resolution

CVPR-EarthVision 2020

Saumyaa Shah

S Manthira Moorthi

Debajyoti Dhar

Popular Approaches

- Supervised Learning
- Adversarial Learning

Popular Approaches

- Supervised Learning
- Adversarial Learning

What about RL?

Significant progress in complex environments.

Popular Approaches

- Supervised Learning
- Adversarial Learning

What about RL?

Significant progress in complex environments.

Can we use RL?

Popular Approaches

- Supervised Learning
- Adversarial Learning

What about RL?

• Significant progress in complex environments.

Can we use RL?

Yes, but there is a cache.

Popular Approaches

- Supervised Learning
- Adversarial Learning

What about RL?

- Significant progress in complex environments.
- A straightforward implementation of RL is not adequate.
- Action variables are not fully known in super resolution environment.

Can we use RL?

• Yes, but there is a catch.

Popular Approaches

- Supervised Learning
- Adversarial Learning

What about RL?

- Significant progress in complex environments.
- A straightforward implementation of RL is not adequate.
- Action variables are not fully known in super resolution environment.

Can we use RL?

• Yes, but there is a catch.

Popular Approaches

- Supervised Learning
- Adversarial Learning

What about RL?

- Significant progress in complex environments.
- A straightforward implementation of RL is not adequate.
- Action variables are not fully known in super resolution environment.

Can we use RL?

• Yes, but there is a catch.

Popular Approaches

- Supervised Learning
- Adversarial Learning

What about RL?

- Significant progress in complex environments.
- A straightforward implementation of RL is not adequate.
- Action variables are not fully known in super resolution environment.

One way is to parameterize action variables by matrices and train our policy network using Monte-Carlo sampling.

Can we use RL?

• Yes, but there is a catch.

Popular Approaches

- Supervised Learning
- Adversarial Learning

What about RL?

- Significant progress in complex environments.
- A straightforward implementation of RL is not adequate.
- Action variables are not fully known in super resolution environment.

One way is to parameterize action variables by matrices and train our policy network using Monte-Carlo sampling.

Grid World

Exploration-Exploitation Paradigm

- Explores various action variables
- Exploits selected action variables after sufficient exploration
- Repeatedly performs selected actions

Experimental results on CelebA Dataset

Experimental results on IRS Dataset

SRCNN

SPOA

(PSNR/SSIM) (36.72/0.9471)

(PSNR/SSIM) (44.38/0.9865)

IRS: Indian Remote Sensing Satellite

Comparison with State-of-the-art Methods on WorldView-2

Comparison with State-of-the-art Methods on WorldView-2

	Metrics	PSNR	SSIM	SRE	SAM	NIQE	Ma's	PI
	BiCubic	57.51	0.9939	46.48	17.25	5.50	3.77	5.86
	SRCNN [14]	59.15	0.9964	48.10	14.14	5.73	4.88	5.42
	LapSRN [28]	59.31	0.9964	48.08	13.98	5.08	5.96	4.56
	DRLN [2]	59.32	0.9964	48.10	13.97	4.21	6.03	4.08
	SPOA(DRLN)	58.89	0.9960	47.94	14.69	3.65	6.60	3.52
	SPOA(DRLN)+SA	59.33	0.9966	48.20	13.81	5.02	5.54	4.74
	SPOA(DRLN)+SA+VGG	59.22	0.9963	48.23	14.13	4.30	6.20	4.05
	SPOA(DRLN)+VGG	58.98	0.9961	47.94	14.60	4.16	6.56	3.80
	GT	-	-	-	-	2.05	7.01	2.52

Proposed Approach

- SPOA(DRLN) achieves state-of-the-art result in perceptual quality.
- SPOA(DRLN)+SA achieves state-of-the-art result in distortion metrics.

Yochai Blau and Tomer Michaeli. The perception-distortion tradeoff. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6228–6237, 2018.

Summary

- Explored plausible usage of deep reinforcement learning in super resolution.
- Introduced SPOA to circumvent tractability issues in RL based super resolution.
- Key ingredients of SPOA:
 - Feature Extraction Network
 - Siamese Policy Network
 - Actor Network
- Provided pseudo code for training SPOA in an end-to-end fashion.
- Experimented on multiple datasets:
 - CelebA
 - IRS-1C/1D
 - WorldView-2
- Investigated perception-distortion tradeoff.

Few Noteworthy Extensions

- <u>Extension of SPOA</u> to wide variety of problems which are currently solved using supervised learning.
- Explore broad <u>spectrum of reinforcement learning</u> algorithms in this framework.
- Study how well SPOA figures out <u>matrix representation of actions</u> by hiding known action variables in <u>RL benchmarks</u>.