S2A: Wasserstein GAN with Spatio-Spectral Laplacian **Attention for Multi-Spectral Band Synthesis**

CVPR-EarthVision 2020

Litu Rout

Indranil Misra

S Manthira Moorthi

Debajyoti Dhar

Super-resolution as conditional band synthesis

- Direct super-resolution is intractable.
- Lack necessary geometric attributes.

FCC

- Geometry from existin
- FCC: NIR (R), R (G), G(B)
- Reformulate as conditional band synthesis.
- Geometry from existing high resolution bands: HR-NIR, R, G.
 - Radiometry from corresponding low resolution band: LR-SWIR.

Super-resolution as conditional band synthesis

- Direct super-resolution is intractable.
- Lack necessary geometric attributes.

FCC: NIR (R), R (G), G(B)

- Reformulate as conditional band synthesis.
- Geometry from existing high resolution bands: HR-NIR, R, G.
- Radiometry from corresponding low resolution band: LR-SWIR.

LR-SWIR

HR-SWIR-Original

HR-SWIR-Predicted

HR-NIR,R,G

LR-Upsampled-SWIR

LR-SWIR

Over dependence on upsampled <u>coarse</u> <u>resolution</u> band results in unpleasant artifacts.

- Geometric distortion
- Radiometric imbalance

FCC: SWIR (R), NIR (G), Red (B)

HR-SWIR-Original

HR-SWIR-Predicted

HR-NIR,R,G

LR-Upsampled-SWIR

LR-SWIR

Over dependency on upsampled <u>coarse</u> <u>resolution</u> band results in unpleasant artifacts.

- Geometric distortion
- Radiometric imbalance

FCC: SWIR (R), NIR (G), Red (B)

HR-SWIR-Original

Over dependency on upsampled <u>coarse</u> <u>resolution</u> band results in unpleasant artifacts.

- Geometric distortion
- Radiometric imbalance

Proposed Approach

FCC: SWIR (R), NIR (G), Red (B)

Spatial Attention Loss

$$\mathscr{L}_{sa} = \mathbb{E}_{\hat{x} \sim \mathbb{P}_{\hat{x}}, y \sim \mathbb{P}_{y}} \left[\left\| A_{s}(\hat{x}) - A_{s}(y) \right\|_{2}^{2} \right]$$

Domain Adaptation Loss $\mathscr{L}_{da} = \mathbb{E}_{\tilde{y} \sim \mathbb{P}_{\tilde{y}}, y \sim \mathbb{P}_{y}} \left[\|A_{s}(\tilde{y}) - A_{s}(y)\|_{2}^{2} \right]$

Spatial Attention Loss

$$\mathscr{L}_{sa} = \mathbb{E}_{\hat{x} \sim \mathbb{P}_{\hat{x}}, y \sim \mathbb{P}_{y}} \left[\left\| A_{s}(\hat{x}) - A_{s}(y) \right\|_{2}^{2} \right]$$

Domain Adaptation Loss

$$\mathscr{L}_{da} = \mathbb{E}_{\tilde{y} \sim \mathbb{P}_{\tilde{y}}, y \sim \mathbb{P}_{y}} \left[\|A_{s}(\tilde{y}) - A_{s}(y)\|_{2}^{2} \right]$$

iscriminator Objective in $\mathbb{E}_{\hat{X} \sim \mathbb{P}_{\hat{X}}} [D(\hat{X})] - \mathbb{E}_{X \sim \mathbb{P}_{\hat{X}}} [D(X)]$ $+ \lambda_{gp} \mathbb{E}_{\tilde{X} \sim \mathbb{P}_{\hat{X}}} [(||\nabla_{\hat{X}} D(\hat{X})||_{2} - 1)^{2}$ $+ \lambda_{sa} \mathcal{L}_{sa} + \lambda_{da} \mathcal{L}_{da}.$

Spatial Attention Loss

$$\mathscr{L}_{sa} = \mathbb{E}_{\hat{x} \sim \mathbb{P}_{\hat{x}}, y \sim \mathbb{P}_{y}} \left[\left\| A_{s}(\hat{x}) - A_{s}(y) \right\|_{2}^{2} \right]$$

Domain Adaptation Loss

$$\mathscr{L}_{da} = \mathbb{E}_{\tilde{y} \sim \mathbb{P}_{\tilde{y}}, y \sim \mathbb{P}_{y}} \left[\|A_{s}(\tilde{y}) - A_{s}(y)\|_{2}^{2} \right]$$

Discriminator Objective
$$\begin{split} \min_{D} \mathbb{E}_{\hat{x} \sim \mathbb{P}_{\hat{x}}} \left[D(\hat{x}) \right] &- \mathbb{E}_{x \sim \mathbb{P}_{x}} \left[D(x) \right] \\ &+ \lambda_{gp} \mathbb{E}_{\tilde{x} \sim \mathbb{P}_{\tilde{x}}} \left[(\|\nabla_{\tilde{x}} D(\tilde{x})\|_{2} - 1)^{2} \right] \\ &+ \lambda_{sa} \mathscr{L}_{sa} + \lambda_{da} \mathscr{L}_{da}, \end{split}$$

Spatio-Spectral Laplacian Attention

Spatio-Spectral Laplacian Attention

Spectral attention coefficients

Combining Spatial Attention with Source Bands

Multiplication:

- Attention module latches on to bright targets.
- Synthesized band contains blocky artifacts.

Source Ground Truth AeroGAN DSen2 DeepSWIR ALERT S2A (ours) (SRE/SSIM) (44.62/86.03)(50.04/93.85)(50.35/94.02)(50.81/94.54)**(50.83/95.08)**

Method	RMSE	SSIM(%)	SRE(dB)	PSNR(dB)	SAM(deg)
AeroGAN [31]	21.62	86.03	44.62	36.50	12.15
DSen2 [21]	14.14	93.85	50.04	41.94	7.88
DeepSWIR [33]	13.75	94.02	50.35	42.27	7.66
ALERT [32]	12.97	94.54	50.81	42.80	7.48
S2A (ours)	11.74	95.08	50.83	42.76	6.87

- Learns to attend to relevant parts of source imagery.
- Homogeneous and heterogeneous targets are discernible.
- Similar features have similar attention coefficients

Wetland Delineation

Water Segmentation

Wetland Delineation

Water Segmentation

(a) NIR(R),R(G),G(B) (b) GT-MNDWI (IoU) (c) S2A (99.117)

Additional Value Product Generation

Hilly Terrain

Main land

Summary

- Formulated super resolution as conditional band synthesis
- Regulated band synthesis through spatial and Laplacian spectral channel attention
- Introduced two new cost functions for the discriminator:
 - Spatial attention loss
 - Domain adaptation loss
- Experimented on multiple datasets:
 - LISS-3
 - LISS-4
 - WorldView-2
- Demonstrated real world applications of synthesized band:
 - Wetland delineation
 - Index based water segmentation
 - Additional value product generation/ Large area mosaic